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Recent work introduced Generalized First Order Decision Diagrams (GFODD) as a knowl-
edge representation language that is useful in mechanizing decision theoretic planning 
in relational domains. GFODDs generalize function-free first order logic and include 
numerical values and numerical generalizations of existential and universal quantification. 
Previous work presented heuristic inference algorithms for GFODDs and implemented these 
heuristics in systems for decision theoretic planning. In this paper, we study the complexity 
of the computational problems addressed by such implementations. In particular, we study 
the evaluation problem, the satisfiability problem, and the equivalence problem for GFODDs 
under the assumption that the size of the intended model is given with the problem, 
a restriction that guarantees decidability. Our results provide a complete characterization 
placing these problems within the polynomial hierarchy. The same characterization applies 
to the corresponding restriction of problems in first order logic, giving an interesting new 
avenue for efficient inference when the number of objects is bounded. Our results show 
that for �k formulas, and for corresponding GFODDs, evaluation and satisfiability are �P

k
complete, and equivalence is �P

k+1 complete. For �k formulas evaluation is �P
k complete, 

satisfiability is one level higher and is �P
k+1 complete, and equivalence is �P

k+1 complete.
© 2015 Elsevier B.V. All rights reserved.

1. Introduction

The complexity of inference in first order logic has been investigated intensively. It is well known that the problem 
is undecidable, and that this holds even with strong restrictions on the types and number of predicates allowed in the 
logical language. For example, the problem is undecidable for quantifier prefix ∀2∃∗ with a signature having a single binary 
predicate and equality [8]. Unfortunately, the problem is also undecidable if we restrict attention to satisfiability under finite 
structures [6,24]. Thus, in either case, one cannot quantify the relative difficulty of problems without further specialization 
or assumptions. On the other hand, algorithmic progress in AI has made it possible to reason efficiently in some cases. In 
this paper we study such problems under the additional restriction that an upper bound on the intended model size is 
given explicitly. This restriction is natural for many applications, where the number of objects is either known in advance 
or known to be bounded by some quantity. Since the inference problem is decidable under this restriction, we can provide 
a more detailed complexity analysis.

This paper is motivated by recent work on decision diagrams, known as FODDs and GFODDs, and the computational 
questions associated with them. Binary decision diagrams [3,1] provide a successful representation language capturing func-

✩ A preliminary version of this paper has appeared as [10]. This paper includes a broader exposition and a significant amount of additional details in 
proofs and constructions required to obtain the technical results.
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tions over propositional variables, that allows for efficient manipulation and composition of functions, and diagrams have 
been used in various applications in program verification and AI [3,1,11]. Motivated by this success, several authors have 
attempted generalizations to handle relational structure and first order quantification [9,33,30,16]. In particular FODDs [33]
and their generalization GFODDs [16] have been introduced and shown to be useful in the context of decision theoretic 
planning [2,20,12,13] for problems with relational structure [15,17].

GFODDs can be seen to generalize the function-free portion of first order logic (i.e., signatures with constants but without 
higher arity functions) to allow for non-binary numerical values generalizing truth values, and for numerical quantifiers 
generalizing existential and universal quantification in logic. Efficient heuristic inference algorithms for such diagrams have 
been developed focusing on the finite model case, and using the notion of “reasoning from examples” [22,23,21]. This paper 
analyzes the complexity of the evaluation, satisfiability, and equivalence problems for such diagrams, focusing on the GFODD 
subset with min and max aggregation that are defined in the next section. To avoid undecidability and get a more refined 
classification of complexity, we study a restricted form of the problem where the finite size of the intended model is given 
as part of the input to the problem. As we argue below, this is natural and relevant in the applications of GFODDs for solving 
decision theoretic control problems. The same restrictions can be used for the corresponding (evaluation, satisfiability and 
equivalence) problems in first order logic, but to our knowledge this has not been studied before. We provide a complete 
characterization of the complexity showing an interesting structure. Our results are developed for the GFODD representation 
and require detailed arguments about the graphical representation of formulas in that language. The same lines of argument 
(with simpler proof details) yield similar results for first order logic. To translate our results to the language of logic, consider 
the quantifier prefix of a first order logic formula using the standard notation using �k , �k to denote alternation depth of 
quantifiers in the formula. With this translation, our results show that:

(1) Evaluation over finite structures spans the polynomial hierarchy, that is, evaluation of �k formulas is � P
k complete, 

and evaluation of �k formulas is �P
k complete.

(2) Satisfiability, with a given bound on model size, follows a different pattern: satisfiability of �k formulas is � P
k

complete, and satisfiability of �k formulas is � P
k+1 complete.

(3) Equivalence, under the set of models bounded by a given size, depends only on quantifier depth: both the equivalence 
of �k formulas and equivalence of �k formulas are �P

k+1 complete.
The positive results allow for constants in the signature but the hardness results, except for satisfiability for �1 formulas, 

hold even without constants. For signatures without constants, satisfiability of �1 formulas is in NP; when constants are 
allowed, it is � P

2 complete as in the general template.
These results are useful in that they clearly characterize the complexity of the problems solved heuristically by imple-

mentations of GFODD systems [15,17] and can be used to partly motivate or justify the use of these heuristics. For example, 
the “model checking reductions” of [16] that simplify the structure of diagrams replace equivalence tests with model eval-
uation on a “representative” set of models. When this set is chosen heuristically, as in [15], this leads to inference that is 
correct with respect to these models but otherwise incomplete. Our results show that this indeed leads to a reduction of 
the complexity of the inference problem, so that the loss in accuracy is traded for improved worst case run time. Impor-
tantly, it shows that without compromising correctness, the complexity of equivalence tests that are used to compress the 
representation will be higher. These issues and further questions for future work are discussed in the concluding section of 
the paper.

The rest of the paper is organized as follows. The next section defines FODDs and GFODDs and provides a more detailed 
motivation for the technical questions. Section 3 then develops the results for FODDs. We treat the FODD case separately for 
three reasons. First, this serves for an easy introduction into the results that avoids some of the more involved arguments 
that are required for GFODDs. Second, as will become clear, for FODDs we do not need the additional assumption on model 
size, so that the results are in a sense stronger. Finally, some of the proofs for GFODDs require alternation depth of at least 
two so that separate proofs are needed for FODDs in any case. Section 4 develops the results for GFODDs. The final section 
concludes with a discussion and directions for future work.

2. FODDs and GFODDs and their computational problems

This section introduces the GFODD representation language and associated computational problems, and explains how 
they are motivated by prior work on applying GFODDs in decision theoretic planning. We assume familiarity with basic 
concepts and notation in predicate logic [25,29,4] as well as basic notions from complexity theory [14,32,26].

Decision diagrams are similar to expressions in first order logic (FOL). They are defined relative to a relational signature, 
with a finite set of predicates p1, p2, . . . , pn each with an associated arity (number of arguments), a countable set of 
variables x1, x2, . . . , and a set of constants c1, c2, . . . , cm . We do not allow function symbols other than constants (that is, 
functions with arity ≥ 1). In addition, we assume that the arity of predicates is bounded by some numerical constant. 
A term is a variable or constant and an atom is either an equality between two terms or a predicate with an appropriate 
list of terms as arguments. Intuitively, a term refers to an object in the world of interest and an atom is a property which 
is either true or false.

To motivate the diagram representation consider first a simpler language of generalized expressions which we illus-
trate informally by some examples. In FOL we can consider open formulas that have unbound variables. For example, the 
atom color(x, y) is such a formula and its truth value depends on the assignment of x and y to objects in the world. To 
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