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Sparse feature selection has proven to be effective in analyzing high-dimensional data. 
While promising, most existing works apply convex methods, which may be suboptimal 
in terms of the accuracy of feature selection and parameter estimation. In this paper, 
we consider both continuous and discrete nonconvex paradigms to sparse group feature 
selection, which are motivated by applications that require identifying the underlying 
group structure and performing feature selection simultaneously. The main contribution
of this article is twofold: (1) computationally, we develop efficient optimization algorithms 
for both continuous and discrete formulations, of which the key step is a projection with 
two coupled constraints; (2) statistically, we show that the proposed continuous model 
reconstructs the oracle estimator. Therefore, consistent feature selection and parameter 
estimation are achieved simultaneously. Numerical results on synthetic and real-world data 
suggest that the proposed nonconvex methods compare favorably against their competitors, 
thus achieving desired goal of delivering high performance.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

During the past decade, sparse feature selection has been extensively investigated, on both optimization algorithms [1]
and statistical properties [39,52,4]. When the data possesses certain group structure, sparse modeling has been explored 
in [49,30,21,47] for group feature selection. The group lasso [49,40] proposes an L2-regularization method for each group, 
which ultimately yields a group-wisely sparse model. The utility of such a method has been demonstrated in detecting 
splice sites [48]—an important step in gene finding and theoretically justified in [21]. The sparse group lasso [17] enables 
to encourage sparsity at the level of both features and groups simultaneously. In the literature, most approaches use con-
vex methods to pursue the grouping effect due to globality of the solution and tractable computation. However, this may 
lead to suboptimal results. Recent studies demonstrate that nonconvex methods [14,42,8,20,22], particularly the truncated 
L1-penalty [35,29,51], may deliver superior performance than the standard L1-formulation. In addition, [36] suggests that 
a constrained nonconvex formulation is slightly more preferable than its regularization counterpart in terms of the capa-
bility of feature selection. In this paper, we investigate the sparse group feature selection through a constrained nonconvex
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formulation. Ideally, we wish to optimize the following L0-model:

minimize
x

1

2
‖Ax − y‖2

2

subject to
p∑

j=1

I(|x j| �= 0) ≤ s1

|G|∑
j=1

I(‖xG j ‖2 �= 0) ≤ s2, (1)

where A is an n by p data matrix with its columns representing different features. x = (x1, · · · , xp) is partitioned into |G|
non-overlapping groups {xGi } and I(·) is the indicator function. The advantage of the L0-model (1) lies in its complete 
control on two levels of sparsity (s1, s2), which are the numbers of features and groups respectively. However, problems 
such like (1) are known to be NP-hard [31] because of the discrete nature.

We develop two methods for the sparse group feature selection problem. The first method makes use of a continuous 
computational surrogate of the L0-method described above, and has theoretically guaranteed performance. On the contrary, 
the second proposed method retains the discrete nature and the key is to solve a sparse group subset selection problem via 
dynamic programming. We develop efficient algorithms for both methods. In addition, we explore the statistical properties 
of the first method; specifically we show that the proposed method retains the merits of the L0-approach (1) in the sense 
that the oracle estimator can be reconstructed, which leads to consistent feature selection and parameter estimation. An 
earlier version of this paper [45] containing only the first approach was accepted by the 30th International Conference on 
Machine Learning (ICML).

The rest of this paper is organized as follows. Section 2 presents our continuous optimization approach, in which a 
nonconvex formulation with its optimization algorithm and theoretical properties are explored. The discrete optimization 
approach is discussed in Section 3, where we transform the key projection into a discrete sparse group subset selection 
problem and develop a dynamic programming algorithm to compute the globally optimal solution. The significance of this 
work is presented in Section 4. Section 5 demonstrates the efficiency of the proposed methods as well as the performance 
on real-world applications. Section 6 concludes the paper with a discussion of future research.

2. Continuous optimization approach

One major difficulty of solving (1) comes from nonconvex and discrete constraints, which require enumerating all pos-
sible combinations of features and groups to achieve the optimal solution. Therefore we approximate these constraints by 
their continuous computational surrogates:

minimize
x

1

2
‖Ax − y‖2

2

subject to
p∑

j=1

Jτ (|x j|) ≤ s1

|G|∑
i=1

Jτ (‖xGi ‖2) ≤ s2, (2)

where Jτ (z) = min(|z|/τ , 1) is a truncated L1-function approximating the L0-function [35,50], and τ > 0 is a tuning param-
eter such that Jτ (z) approximates the indicator function I(|z| �= 0) as τ approaches zero.

To solve the nonconvex problem (2), we develop a Difference of Convex (DC) algorithm [38] based on a decomposition 
of each nonconvex constraint function into a difference of two convex functions:

p∑
j=1

Jτ (|x j |) = S1(x) − S2(x),

where

S1(x) = 1

τ

p∑
j=1

|x j|, S2(x) = 1

τ

p∑
j=1

max{|x j| − τ ,0}

are convex in x. Then each trailing convex function, say S2(x), is replaced by its affine minorant at the previous iteration

S1(x) − S2(x̂(m−1)
) − gT (x − x̂(m−1)

), (3)
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