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On-line portfolio selection, a fundamental problem in computational finance, has attracted 
increasing interest from artificial intelligence and machine learning communities in recent 
years. Empirical evidence shows that stock’s high and low prices are temporary and stock 
prices are likely to follow the mean reversion phenomenon. While existing mean reversion 
strategies are shown to achieve good empirical performance on many real datasets, they 
often make the single-period mean reversion assumption, which is not always satisfied, 
leading to poor performance in certain real datasets. To overcome this limitation, this 
article proposes a multiple-period mean reversion, or so-called “Moving Average Reversion” 
(MAR), and a new on-line portfolio selection strategy named “On-Line Moving Average 
Reversion” (OLMAR), which exploits MAR via efficient and scalable online machine learning 
techniques. From our empirical results on real markets, we found that OLMAR can 
overcome the drawbacks of existing mean reversion algorithms and achieve significantly 
better results, especially on the datasets where existing mean reversion algorithms failed. 
In addition to its superior empirical performance, OLMAR also runs extremely fast, further 
supporting its practical applicability to a wide range of applications. Finally, we have made 
all the datasets and source codes of this work publicly available at our project website: 
http :/ /OLPS .stevenhoi .org/.

© 2015 Elsevier B.V. All rights reserved.

1. Introduction

Portfolio selection is a fundamental problem of computational finance extensively explored across several fields, ranging 
from traditional finance theory and quantitative finance, to machine learning and artificial intelligence [43]. It generally 
aims to achieve some targets in the long run by sequentially allocating wealth across a set of assets. Two major schools of 
principles and theories for portfolio selection include: (i) Mean-variance theory [48] that trades off between expected return 
(mean) and risk (variance) of a portfolio, which is suitable for single-period portfolio selection; and (ii) Kelly investment [41,
10,23] that aims to maximize the expected log return of a portfolio and is naturally available to multiple-period portfolio 
selection. Due to the sequential nature of a real-world portfolio selection task, many recent on-line portfolio selection 
techniques often follow the second approach.

✩ The short version of this work [42] appeared at the 29th International Conference on Machine Learning (ICML 2012).
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One important property exploited by many existing studies [8,46,45] is the mean reversion property, which assumes poor 
performing stocks will perform well in the subsequent periods and vice versa. Although some recently proposed mean 
reversion algorithms [46,45] have achieved promising results on many real datasets, they might perform extremely poorly 
on certain datasets, such as the DJIA dataset [8]. Comparing with Borodin et al. [8], which exploits multi-period correlation, 
we found that the assumption of single-period prediction may attribute to the performance degradation. On the other hand, 
as illustrated in existing studies [46,45], Borodin et al. [8] cannot fully exploit the potential of (multi-period) mean reversion 
for its heuristical nature.

To address the above drawbacks, we present a new approach for on-line portfolio selection, named “On-Line Moving 
Average Reversion” (OLMAR). The basic idea is to represent multi-period mean reversion as “Moving Average Reversion” 
(MAR), which explicitly predicts next price relatives using moving averages, and then learns portfolios via online learning 
techniques [38]. To the best of our knowledge, OLMAR is the first algorithm that exploits moving average in the setting of 
on-line portfolio selection. Though simple in nature, OLMAR has a reasonable updating strategy and has been empirically 
validated via a set of extensive experiments on real markets. The experimental results show that OLMAR not only can 
achieve better performance (in terms of cumulative wealth) than existing algorithms, but also can avoid the significant 
performance degradation on certain datasets, such as the DJIA dataset [8,46]. Finally, OLMAR runs highly efficiently, and 
thus is suitable for large-scale trading applications.

The rest of the paper is organized as follows. Section 2 formulates the on-line portfolio selection problem, and Section 3
reviews the background and analyzes related work. Section 4 presents the proposed OLMAR approach, and its effectiveness 
is validated by extensive empirical studies on real stock markets in Section 5. Section 6 discusses our empirical findings and 
some threats to validity. Section 7 summarizes the paper and provides directions for future work.

2. Problem setting

Before we formulate the online portfolio selection problem, we first introduce some notations to be used throughout the 
article. Symbols in bold are vectors, e.g., we define a as a scalar, and b and c as vectors. One typical operation is the product 
or division between a scalar and a vector, which means each element of the vector will multiply or divide by the scalar, 
e.g., [ab]i = a ∗ bi and [ a

b ]i = a
bi

. For the element-wise operations between two vectors, we denote by a
b the element-wise 

division and a ⊗ b the element-wise product, which means [ a
b ]i = ai/bi and [a ⊗ b]i = ai ∗ bi , respectively. The dot product 

between two vectors is defined as a · b = aT b = ∑n
i=1 ai ∗ bi .

Now let us consider an investment task over a financial market with m assets for n periods. On the tth period, the asset 
prices are represented by a close price vector pt ∈ R

m+ , and each element pt,i represents the close price of asset i. The price 
changes are represented by a price relative vector xt ∈ R

m+ , and xt,i = pt,i
pt−1,i

. Thus, an investment in asset i on the tth period 
increases by a factor of xt,i . Let us denote xt2

t1 = {xt1, xt2, . . . , xt2} as a sequence of price relative vectors ranging from period 
t1 to t2. Therefore, xn

1 = {x1, . . . , xn} represents the sequence of price relative vectors over the entire n periods.
An investment on the tth period is specified by a portfolio vector bt = (bt,1, . . . , bt,m), where bt,i represents the proportion 

of wealth invested in asset i. Typically, we assume the portfolio is self-financed and no margin/short sale is allowed, there-
fore each entry of a portfolio is non-negative and adds up to one, that is, bt ∈ Δm , where Δm = {bt : bt ∈R

m+, 
∑m

i=1 bt,i = 1}. 
The investment procedure is represented by a portfolio strategy, that is, b1 = 1

m 1 and the following sequence of mappings 
bt : Rm(t−1)

+ → Δm , t = 2, 3, . . ., where bt = bt(xt−1
1 ) is the tth portfolio given past market sequence of xt−1

1 = {x1, . . . , xt−1}. 
We denote by bn

1 = {b1, . . . , bn} the strategy for n periods.
On the tth period, a portfolio bt produces a portfolio period return st , that is, the wealth increases by a factor of st =

b�
t xt = ∑m

i=1 bt,i xt,i . Since we reinvest and adopt price relative, the portfolio wealth would multiplicatively grow. Thus, after 
n periods, a portfolio strategy bn

1 produces a portfolio cumulative wealth of Sn , which increases the initial wealth by a factor 
of 

∏n
t=1 b�

t xt , that is, Sn(bn
1, x

n
1) = S0

∏n
t=1 b�

t xt , where S0 is set to $1 for convenience.
Finally, we formally formulate the on-line portfolio selection procedure, and outline the algorithmic framework in Algo-

rithm 1. In this task, a portfolio manager is a decision maker, whose goal is to produce a portfolio strategy bn
1, aiming to 

maximize the cumulative wealth Sn . He/she computes the portfolios sequentially. On each period t , the manager has access 
to the sequence of previous price relative vectors xt−1

1 . Then, he/she computes a new portfolio bt for next price relative 
vector xt , where the decision criterion varies among different managers. The portfolio bt is scored based on portfolio pe-
riod return st . This procedure is repeated until the end, and the portfolio strategy is finally scored according to portfolio 
cumulative wealth Sn .

It is important to note that we have made several general and common assumptions in the above model:

1. Transaction cost: no commission fees or taxes exists;
2. Market liquidity: one can buy and sell any desired amount, even fractional, at last closing price of any given trading 

period;
3. Market impact: any portfolio selection strategy shall not influence the market, or other stocks’ prices.

Note that although these assumptions are commonly made in many literature studies, they are nontrivial in practice. We 
will further analyze and discuss their implications and effects in the empirical studies.
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