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Inferring the most probable explanation to a set of variables, given a partial observation 
of the remaining variables, is one of the canonical computational problems in Bayesian 
networks, with widespread applications in AI and beyond. This problem, known as MAP, 
is computationally intractable (NP-hard) and remains so even when only an approximate 
solution is sought. We propose a heuristic formulation of the MAP problem, denoted 
as Inference to the Most Frugal Explanation (MFE), based on the observation that many 
intermediate variables (that are neither observed nor to be explained) are irrelevant with 
respect to the outcome of the explanatory process. An explanation based on few samples 
(often even a singleton sample) from these irrelevant variables is typically almost as 
good as an explanation based on (the computationally costly) marginalization over these 
variables. We show that while MFE is computationally intractable in general (as is MAP), 
it can be tractably approximated under plausible situational constraints, and its inferences 
are fairly robust with respect to which intermediate variables are considered to be relevant.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Abduction or inference to the best explanation refers to the process of finding a suitable explanation (the explanans) 
of observed data or phenomena (the explananda). In the last decades, Bayesian notions of abduction have emerged due to 
the widespread popularity of Bayesian or probabilistic techniques for representing and reasoning with knowledge [5,26,30,
47,52]. They are used in decision support systems in a wide range of problem domains (e.g., [7,11,21,23,32,45,64]) and as 
computational models of economic, social, or cognitive processes [10,25,33,48,58,60]. The natural interpretation of ‘best’ in 
such models is ‘most probable’: the explanation that is the most probable one given the evidence, i.e., that has maximum 
posterior probability, is seen as the hypothesis that best explains the available evidence; this explanation is traditionally 
referred to as the MAP explanation and the computational problem of inferring this explanation as the MAP problem.1

However, computing or even approximating the MAP explanation is computationally costly (i.e., NP-hard), especially 
when there are many intermediate (neither observed nor to be explained) variables that may influence the explanation 
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1 Other relationships have been proposed that compete in providing ‘sufficiently rational’ relations between observed phenomena and their explanation 

that can be used to describe why we judge one explanation to be preferred over another [28,44]. Examples include maximum likelihood [29], which does 
not take the prior probabilities of the hypotheses into account, the conservative Bayesian approach [6], generalized Bayes factor [66], and various Bayesian 
formalisms of coherence theory [5,15,26,49]. While the posterior probability of such explanations is not the deciding criterion to prefer one explanation 
over another, it is typically so that explanations we consider to be good for other reasons also have a high posterior probability compared to alternative 
explanations [27,44].
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[1,4,51,56]. To compute the posterior probability distribution of the explanation variables, all these intermediate variables 
need to be marginalized over. One way of dealing with this intractability might be by assuming modularity of knowledge 
representations, i.e., by assuming that these representations are informationally encapsulated and do not have access to 
background knowledge. However, this is problematic as we cannot know beforehand which elements of background knowl-
edge or observations may be relevant for determining the best explanation [17,19].

Fortunately, even when a full Bayesian computation may not be feasible in large networks, we need not constrain infer-
ences only to small or disconnected knowledge structures. It is known that in general the posterior probability distribution 
of a (discrete) Bayesian network is skewed, i.e., few joint value assignments together cover most of the probability space 
[13], and that typically only a few of the variables in a network are relevant for a particular inference query [14]. We 
propose to utilize this property of Bayesian networks in order to make tractable (approximate) inferences to the best ex-
planation over large and unencapsulated knowledge structures. We introduce a heuristic formulation of MAP, denoted as 
Inference to the Most Frugal Explanation (MFE), that is explicitly designed to reflect that only a few intermediate variables 
are typically relevant in real-world situations. In this formulation we partition the set of intermediate variables in the net-
work into a set of ‘relevant’ intermediate variables that are marginalized over, and a set of ‘irrelevant’ intermediate variables 
that we sample from in order to estimate an explanation.

Note that in the MFE formalism there is marginalization over some of the intermediate variables (the variables that are 
considered to be relevant), but not over those intermediate variables that are not considered to be relevant. Thus, MFE can 
be seen as a ‘compromise’ between computing the explanation with maximum posterior probability, where one marginalizes 
over all intermediate variables, and the previously proposed Most Simple Explanation (MSE) formalism [35] where there is 
no marginalization at all, i.e., all intermediate variables are seen as irrelevant. We want to emphasize that the notions 
‘relevant’ and ‘irrelevant’ in the problem definition denote subjective partitions of the intermediate variables; we will revisit 
this issue in Section 3.1.

We claim that this heuristic formalism of the MAP problem exhibits the following desirable properties:

1. The knowledge structures are isotropic, i.e., they are such that, potentially, everything can be relevant to the outcome of 
an inference process. They are also Quinean: candidate explanations are sensitive to the entire belief system [17,18].

2. The inferences are provably computationally tractable (either to compute exactly or to approximate) under realistic 
assumptions with respect to situational constraints [43,53].

3. The resulting explanations have an optimal or close-to-optimal posterior probability in many cases, i.e., MFE actually 
‘tracks truth’ in the terms of Glass [28].

In the remainder of this paper, we will discuss some needed preliminaries in Section 2. In Section 3 we discuss MFE in 
more detail. We give a more formal definition, including a formal definition of relevance in the context of Bayesian networks, 
and show how MFE can be tractably approximated under realistic assumptions despite computational intractability of the 
problem in general. In Section 4 we show that MFE typically gives an explanation that has a close-to-optimal posterior 
probability, even if only a subset of the relevant variables is considered. We discuss how MFE performs under various 
scenarios (e.g., when there are few or many relevant variables, when there are many hypotheses that are almost equally 
likely, or when there is a misalignment between the actual relevant variables and the variables that are mistakenly presumed 
to be relevant). We conclude our paper in Section 5.

2. Preliminaries

In this section we will introduce some preliminaries from Bayesian networks, in particular the MAP problem as standard 
formalization of Bayesian abduction. We will discuss the ALARM network which we will use as a running example through-
out this paper. Lastly, we introduce some needed concepts from complexity theory, in particular the complexity class PP, 
oracles, and fixed parameter tractability.

2.1. Bayesian networks and Bayesian abduction

A Bayesian or probabilistic network B is a graphical structure that models a set of stochastic variables, the conditional 
independences among these variables, and a joint probability distribution over these variables [52]. B includes a directed 
acyclic graph GB = (V, A), modeling the variables and conditional independences in the network, and a set of parameter 
probabilities Pr in the form of conditional probability tables (CPTs), capturing the strengths of the relationships between the 
variables. The network models a joint probability distribution Pr(V) = ∏n

i=1 Pr(V i | π(V i)) over its variables, where π(V i)

denotes the parents of V i in GB . We will use upper case letters to denote individual nodes in the network, upper case 
bold letters to denote sets of nodes, lower case letters to denote value assignments to nodes, and lower case bold letters to 
denote joint value assignments to sets of nodes. We will sometimes write Pr(x | y) as a shorthand for Pr(X = x | Y = y) if no 
ambiguity can occur.

In a Bayesian abduction task there are three types of variables: the evidence variables, the explanation variables, and a 
set of variables called intermediate variables that are neither evidence nor explanation variables. The evidence variables are 
instantiated, i.e., have been assigned a value; the joint value assignment constitutes the explananda (what is to be explained, 
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