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Stochastic Shortest Path Problems (SSPs) are a common representation for probabilistic 
planning problems. Two approaches can be used to solve SSPs: (i) consider all probabilisti-
cally reachable states and (ii) plan only for a subset of these reachable states. Closed 
policies, the solutions obtained in the former approach, require significant computational 
effort, and they do not require replanning, i.e., the planner is never re-invoked. The second 
approach, employed by replanners, computes open policies, i.e., policies for a subset of the 
probabilistically reachable states. Therefore, when a state is reached in which the open 
policy is not defined, the replanner is reinvoked to compute a new open policy. In this 
article, we introduce a special case of SSPs, the depth-based short-sighted SSPs, in which 
every state has a nonzero probability of being reached using at most t actions. We also 
introduce the novel algorithm Short-Sighted Probabilistic Planner (SSiPP), which solves 
SSPs through depth-based short-sighted SSPs and guarantees that at least t actions can be 
executed without replanning. Therefore, SSiPP can compute both open and closed policies: 
as t increases, the returned policy approaches the behavior of a closed policy, and for t
large enough, the returned policy is closed. Moreover, we present two extensions to SSiPP: 
Labeled-SSiPP and SSiPP-FF. The former extension incorporates a labeling mechanism to 
avoid revisiting states that have already converged. The latter extension combines SSiPP 
and determinizations to improve the performance of SSiPP in problems without dead 
ends. We also performed an extensive empirical evaluation of SSiPP and its extensions in 
several problems against state-of-the-art planners. The results show that (i) Labeled-SSiPP
outperforms SSiPP and the considered planners in the task of finding the optimal solution 
when the problems have a low percentage of relevant states; and (ii) SSiPP-FF outperforms 
SSiPP in the task of quickly finding suboptimal solutions to problems without dead ends 
while performing similarly in problems with dead ends.

© 2014 Elsevier B.V. All rights reserved.

1. Introduction

Stochastic Shortest Path Problems (SSP) [3] provide a convenient framework for modeling fully observable probabilistic 
planning problems. A solution to an SSP is a policy – a mapping from states to actions – that is guaranteed to reach a 
goal state when executed from the initial state of the given SSP. In this article, we address the question of how to improve 
the scalability of probabilistic planners when searching for (i) an optimal policy and (ii) a suboptimal policy given a time 
deadline.
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One approach to computing optimal solutions to SSPs is to use value iteration and policy iteration algorithms, which 
are optimal [4]. Planners based on these algorithms return a closed policy, i.e., a policy that is defined at least over all the 
probabilistically reachable states of the given SSP. Assuming the model correctly captures the cost and uncertainty of the 
actions in the environment, closed policies are extremely powerful as their execution never “fails”; therefore, the planner 
is never reinvoked. Unfortunately, the computation of such policies is prohibitive in complexity as problems scale up. The 
efficiency of value-iteration-based probabilistic planners can be improved by combining asynchronous updates and heuristic 
search (e.g., Labeled RTDP [5]), resulting in optimal algorithms with convergence bounds. Although these techniques allow 
planners to compute compact policies, in the worst case, these policies are still linear in the size of the state space, which 
itself can be exponential in the size of the state or goals.

Different approaches have been proposed to efficiently find nonoptimal solutions to SSPs based on replanning. Replanners 
do not invest the computational effort to generate a closed policy, and instead compute an open policy, i.e., a policy that 
does not address all the probabilistically reachable states. Different methods can be employed to generate open policies, e.g., 
determinization [30,31], sampling [11,26], and finite horizon search [21,17]. During the execution, if a state not included in 
the open policy is reached, the replanner is reinvoked to compute a new open policy starting from the unpredicted state.

In this work, we introduce a new model, the depth-based short-sighted Stochastic Shortest Path Problems (short-sighted 
SSPs), a special case of SSPs in which every state has a nonzero probability of being reached using at most t actions. We 
also introduce the novel algorithm Short-Sighted Probabilistic Planner (SSiPP), which solves SSPs using short-sighted SSPs to 
represent subproblems of the original problem. We prove that the policies computed by SSiPP can be executed for at least t
time steps without replanning; therefore, by varying the parameter t of the short-sighted SSPs, SSiPP can behave as either 
a probabilistic planner or a replanner: for small values of t , the SSiPP returns open policies and less replanning is necessary 
as t increases; and for t large enough, SSiPP returns closed policies. We provide an upper bound for t in which SSiPP is 
guaranteed to return closed policies.

We also present two extensions of SSiPP: Labeled-SSiPP and SSiPP-FF. Labeled-SSiPP improves the performance of SSiPP 
when searching for the optimal solution of SSPs by not revisiting states that have already converged. SSiPP-FF combines 
SSiPP and determinization to improve the efficiency of SSiPP when searching for a suboptimal solution under small time 
constraints, e.g., the International Probabilistic Planning Competition (IPPC) [33,7,8] rules.

Lastly, we extensively compare SSiPP, Labeled-SSiPP, and SSiPP-FF in different domains against the state-of-the-art prob-
abilistic planners. Our results show that in the task of finding the optimal solution for an SSP, Labeled-SSiPP represents an 
improvement of SSiPP, and Labeled-SSiPP outperforms the other considered planners when the optimal policy encompasses 
a small fraction of the state space. For the task of quickly finding a suboptimal solution to an SSP, our results indicate that 
SSiPP-FF successfully combines the behavior of SSiPP and FF-Replan: for problems without dead ends, SSiPP-FF performance 
is similar to FF-Replan performance (the best planner for problems without dead ends); and for problems with dead ends, 
SSiPP-FF performs better than FF-Replan and similarly to SSiPP. Moreover, the solutions obtained by SSiPP-FF in problems 
without dead ends have better quality, i.e., lower average cost, than the solutions obtained by FF-Replan.

This article is organized as follows: Section 2 reviews the basic background on SSPs and the related work. Section 3
defines formally our novel model, the depth-based short-sighted SSPs, as well as its properties. Section 4 presents our main 
algorithms, namely SSiPP, Labeled-SSiPP, and SSiPP-FF, and their theoretical guarantees. Section 5 empirically evaluates SSiPP 
(and its extensions) against the state-of-the-art planners in two settings: search for the optimal solution (Section 5.2) and 
search for a solution using the IPPC rules (Section 5.3). Section 6 concludes the article.

2. Background and related work

This section introduces the basic concepts and notation used in this article (Section 2.1) and reviews the related work in 
probabilistic planning (Section 2.2).

2.1. Stochastic shortest path problem

A Stochastic Shortest Path Problem (SSP) [3] is a tuple S = 〈S, s0,G,A, P , C〉, in which

• S is the finite set of states;
• s0 ∈ S is the initial state;
• G ⊆ S is the nonempty set of goal states;
• A is the finite set of actions;
• P (s′|s, a) represents the probability that s′ ∈ S is reached after applying action a ∈ A in state s ∈ S; and
• C(s, a, s′) ∈ (0, +∞) is the immediate cost incurred when state s′ is reached after applying action a in state s. This 

function is required to be defined for all s, a, and s′ in which P (s′|s, a) > 0.

In SSPs, an agent executes actions a ∈ A in discrete time steps at a state s ∈ S. The chosen action a changes state s to
state s′ with probability P (s′|s, a) and the cost C(s, a, s′) is incurred. If a goal state sG ∈ G is reached, the problem finishes, 
i.e., no more actions need to be executed. The sequence of states T = 〈s0, s1, s2, . . .〉 visited by the agent is called a trajectory, 
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