
Artificial Intelligence 205 (2013) 39–70

Contents lists available at ScienceDirect

Artificial Intelligence

www.elsevier.com/locate/artint

Approximating operators and semantics for abstract
dialectical frameworks

Hannes Strass

Computer Science Institute, Leipzig University, Augustusplatz 10, 04109 Leipzig, Germany

a r t i c l e i n f o a b s t r a c t

Article history:
Received 9 October 2012
Received in revised form 10 September
2013
Accepted 17 September 2013
Available online 23 September 2013

Keywords:
Abstract dialectical frameworks
Abstract argumentation frameworks
Logic programming
Fixpoint semantics
Approximations
Nonmonotonic reasoning

We provide a systematic in-depth study of the semantics of abstract dialectical frameworks
(ADFs), a recent generalisation of Dung’s abstract argumentation frameworks. This is
done by associating with an ADF its characteristic one-step consequence operator and
defining various semantics for ADFs as different fixpoints of this operator. We first show
that several existing semantical notions are faithfully captured by our definition, then
proceed to define new ADF semantics and show that they are proper generalisations
of existing argumentation semantics from the literature. Most remarkably, this operator-
based approach allows us to compare ADFs to related nonmonotonic formalisms like Dung
argumentation frameworks and propositional logic programs. We use polynomial, faithful
and modular translations to relate the formalisms, and our results show that both abstract
argumentation frameworks and abstract dialectical frameworks are at most as expressive
as propositional normal logic programs.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

In recent years, abstract argumentation frameworks (AFs) [14] have become increasingly popular in the artificial intel-
ligence community. An AF can be seen as a directed graph where the nodes are arguments whose internal structure is
abstracted away, and where the edges encode a notion of attack between arguments. Part of the reason for the interest in
AFs may be that in spite of their conceptual simplicity, there exist many different semantics with different properties in
terms of characterisation, existence and uniqueness. Notwithstanding their success, their expressive capabilities are some-
what limited, as has been recognised many times in the literature: often it is inadequate to model argumentation scenarios
having as only means of expression arguments attacking each other. There have been several proposals towards general-
ising AFs. To cite only a few examples, Prakken and Sartor [34] add priorities amongst arguments that are constructed
from prioritised logic programming rules; Nielsen and Parsons [30] introduced attacks from sets of arguments; Cayrol and
Lagasquie-Schiex [9] presented bipolar argumentation frameworks, in which arguments can also support each other; and
Modgil [28] proposed attacks on attacks with the aim of reasoning about preferences on the object level.

As a general way to overcome the restrictions of Dung’s AFs while staying on the abstract level, Brewka and Woltran
[3] introduced abstract dialectical frameworks (ADFs). Just like AFs, these ADFs treat arguments (called statements there)
as abstract, atomic entities whose contents are not further analysed. But instead of expressing for an argument only its
attackers, ADFs associate with each statement an acceptance condition that determines the acceptance status of a statement
given the acceptance status of its parent statements. These parents are the statements which have a say on whether the
statement in question can or must (not) be accepted. In this way, AFs are recovered in the language of ADFs by specifying
for each statement the acceptance condition “accept if and only if none of the attackers is accepted.”

E-mail address: strass@informatik.uni-leipzig.de.

0004-3702/$ – see front matter © 2013 Elsevier B.V. All rights reserved.
http://dx.doi.org/10.1016/j.artint.2013.09.004

http://dx.doi.org/10.1016/j.artint.2013.09.004
http://www.ScienceDirect.com/
http://www.elsevier.com/locate/artint
mailto:strass@informatik.uni-leipzig.de
http://dx.doi.org/10.1016/j.artint.2013.09.004
http://crossmark.crossref.org/dialog/?doi=10.1016/j.artint.2013.09.004&domain=pdf


40 H. Strass / Artificial Intelligence 205 (2013) 39–70

The abstract nature of Dung’s AFs makes them well-suited as a target language for translations from more expressive
formalisms. To be more precise, it is common to use expressive languages to model more concrete (argumentation) sce-
narios, and to provide these original expressive languages with semantics by translating them into Dung AFs [8,44,33,40].
However, Caminada and Amgoud [8] observed that it is not always immediately clear how such translations into AFs should
be defined, even for a fairly simple source formalism. A major problem that they encountered were unintended conclusions
that indirectly led to inconsistency. In the same paper, Caminada and Amgoud also proposed solutions to these problems,
where during translation additional precautions have to be taken to avoid undesired anomalies. Let us explain in more detail
what this means in general for abstractions among knowledge representation (KR) languages.

First of all, by an abstraction we mean a translation between languages that may disregard some information. Instantiat-
ing an abstract language is then the process of translating a more concrete, more expressive language into the abstract, less
expressive language. This entails that there is no dichotomy “knowledge representation language vs. abstraction formalism”
– any KR language abstracts to a greater or lesser extent, and can thus be used for abstraction purposes. Whether any
specific language is to be used for direct, concrete representation or for abstraction of another language depends entirely on
the application domain at hand.

Naturally, we are interested in those abstractions that preserve the meaning of translated language elements in some
sense. As an example, consider the language {yes,no}. It is very simple and can abstract from any decision problem what-
soever. Furthermore it is trivial to devise an intuitively correct semantics for it. But to faithfully instantiate this language to
a particular decision problem – say, the satisfiability problem of propositional logic –, the problem must be solved during
translation, for otherwise the abstraction would not be meaningful at all. At the other end of the spectrum, for any lan-
guage L, an “abstraction” is provided by L itself. In contrast to the two-element target language {yes,no}, using L as target
language makes it trivial to translate L into the abstraction, but the target language does in fact not abstract at all and
devising a semantics for the abstraction is as hard as devising a semantics for the original language.

Thus abstraction proper should indeed disregard some information, but not too much of it. In the example above, the
fact that the language {yes,no} can abstract away from any decision problem is no argument for its usefulness as an
abstraction formalism, since its expressive power is clearly too poor to model real problems (meaning problems that are
syntactically different from their solutions). Consequently the expressiveness of a language is important when using it as a
target language for abstraction. More specifically, a suitable target language for abstraction must be expressive enough to
model important problem aspects, while being sufficiently abstract to ignore irrelevant details.

So to be able to use a formalism for abstraction, we obviously need a clear picture of its capabilities as a KR language,
especially its expressive power in comparison to other languages, and about the properties of its semantics. It is the main
objective of this paper to provide this information for abstract dialectical frameworks. For this purpose, we technically
view ADFs as KR languages – but of course our work has ramifications for ADFs as abstraction formalisms. In the same
way as there is no single intended semantics for argumentation frameworks, there is also no single perfect formalism for
abstraction. But to be able to make an informed choice, it is of great importance to understand the inherent relationships
between different available options. Our results will facilitate this choice and be an aid to anyone wishing to abstract from
concrete argumentation languages; especially, our results will help them decide if they want to translate into AFs or into
ADFs.

But why, after all, should there be a choice to be made between AFs and ADFs? Here, the additional expressiveness of
ADFs in comparison to AFs comes into play. As we will see throughout the paper, the well-known distinction between sup-
ported and stable models from logic programming is present in ADFs but is missing in AFs. In a different disguise, this same
distinction also materialises as Moore expansions vs. Reiter extensions in nonmonotonic logics [12]. To summarise it in a
nutshell, there are basically two ways in which the major nonmonotonic KR formalisms deal with cyclic positive dependen-
cies between pieces of knowledge. To explain what such cyclic support dependencies are and why they can be problematic,
let us look at a study from the literature where researchers applied several logic-based knowledge representation techniques
in a medium-sized practical application.

Nogueira et al. [32] describe a declarative rule-based system that controls some of the functions of a space shuttle. More
specifically, the system operates the space shuttle’s reaction control system, whose primary responsibility is to manoeuvre
the shuttle through space. Part of the rule-based specification represents the plumbing system of this reaction control
system. The plumbing system consists of a collection of tanks, jets and pipe junctions, which are connected through pipes.
The flow of fluids through pipes is controlled by valves. The purpose of the plumbing system is to deliver fuel and oxidiser
from tanks to the jets needed to perform a manoeuvre. The structure of the plumbing system is described by a directed
graph whose nodes are tanks, jets and pipe junctions, and whose edges are labelled by valves. The description of the
plumbing system should predict how the positions of valves affect the pressure of tanks, jets and junctions. For tanks
themselves, the pressure resulting from pressurising certain (other) tanks is easy to specify. For all other nodes in the graph
the definition is recursive: roughly, any non-tank node is pressurised by a tank if the node is connected by an open valve to
a node which is pressurised by the tank. Nogueira et al. [32] explicitly recognise that modelling this is non-trivial because
the connection graph of the plumbing system can contain cycles. That is, there may be nodes in the graph that are mutually
connected to each other, and accurately modelling this is not straightforward:

Example 1.1 (Under pressure). Consider the following easy setup where two nodes n1, n2 with associated tanks are connected
to each other. The connection between a node ni and its tank is controlled by the valve vi in between.



Download English Version:

https://daneshyari.com/en/article/376928

Download Persian Version:

https://daneshyari.com/article/376928

Daneshyari.com

https://daneshyari.com/en/article/376928
https://daneshyari.com/article/376928
https://daneshyari.com

