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a  b  s  t r  a  c  t

Background  and  objectives:  Kernel  deep  stacking  networks  (KDSNs)  are  a novel  method  for  supervised
learning  in  biomedical  research.  Belonging  to the  class  of  deep  learning  techniques,  KDSNs  are based  on
artificial  neural  network  architectures  that involve  multiple  nonlinear  transformations  of  the  input  data.
Unlike  traditional  artificial  neural  networks,  KDSNs  do  not  rely  on backpropagation  algorithms  but  on  an
efficient  fitting  procedure  that  is  based  on  a series  of  kernel  ridge  regression  models  with  closed-form
solutions.  Although  being  computationally  advantageous,  KDSN modeling  remains  a challenging  task,  as
it requires  the specification  of  a large  number  of tuning  parameters.
Methods  and  material:  We  propose  a new  data-driven  framework  for  parameter  estimation,  hyperpa-
rameter  tuning,  and  model  selection  in KDSNs.  The  proposed  methodology  is based  on  a  combination  of
model-based  optimization  and  hill  climbing  approaches  that  do  not require  the  pre-specification  of  any
of  the KDSN  tuning  parameters.  We demonstrate  the performance  of KDSNs  by  analyzing  three  medical
data  sets  on  hospital  readmission  of diabetes  patients,  coronary  artery  disease,  and  hospital  costs.
Results:  Our  numerical  studies  show  that  the  run-time  of  the  proposed  KDSN  methodology  is significantly
shorter  than  the  respective  run-time  of  grid  search  strategies  for hyperparameter  tuning.  They  also  show
that KDSN  modeling  is competitive  in  terms  of  prediction  accuracy  with  other  state-of-the-art  techniques
for statistical  learning.
Conclusions: KDSNs  are  a computationally  efficient  approximation  of  backpropagation-based  artificial
neural  network  techniques.  Application  of the  proposed  methodology  results  in a  fast  tuning  procedure
that  generates  KDSN  fits  having  a similar  prediction  accuracy  as  other  techniques  in  the  field  of  deep
learning.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Deep learning methods [1,2] are among the most powerful tech-
niques for supervised and unsupervised learning in biomedical
research. Originating in the artificial intelligence and pattern recog-
nition fields, deep learning methods have been used, among many
other examples, to predict splicing patterns in tissues [3], to anno-
tate the pathogenicity of genetic variants [4], to analyze basal cell
carcinoma images [5] and to learn cellular signaling systems [6].
A notable example of the success of deep learning techniques is
the Merck Molecular Activity Challenge contest hosted by Kaggle,
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where deep learning outperformed competing techniques to pre-
dict molecular activity from chemical structures represented by
molecular descriptors [7].

Conceptually, deep learning methods can be regarded as an
extension of artificial neural networks with one hidden layer (“one-
hidden-layer multi-layer perceptrons”), which have become an
established tool to address learning tasks in biomedical research,
see, e.g. [8–10] for recent publications in this field. A key property of
one-hidden-layer multi-layer perceptrons is their ability to approx-
imate any continuous function of the input data arbitrarily well
(“universal function approximators” [11]). Deep learning meth-
ods extend neural networks with one hidden layer by multiple
– potentially less complex – hidden layers, so that higher-level
dependencies between transformations of the input data can be
represented more efficiently than in one-hidden-layer multi-layer
perceptrons [1]. This is in contrast to many other regression
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Fig. 1. Example of a KDSN with three levels.

methods (such as generalized additive models [12], finite mix-
ture models [13] or neural networks with one hidden layer), which
are based on shallow architectures involving at most two nonlinear
transformations of the input data.

In this paper we consider kernel deep stacking networks (KDSNs
[14,15]), which are a novel supervised deep learning method for
continuous and binary outcome variables. KDSNs are defined by
a series of approximations to single-layer networks (in the fol-
lowing termed “levels”) for which the predictions obtained from
lower levels are repeatedly added to the input space. Estimation
of a KDSN is based on level-wise regularized regression models
that are fitted to the kernel-transformed input data (see Fig. 1 for a
schematic overview). This estimation procedure is a key advantage
of KDSNs, as it reduces model fitting to a series of convex opti-
mization problems with closed-form solutions, thereby replacing
traditional estimation techniques such as backpropagation (which
has been criticized for its slow convergence and its tendency to get
stuck in local optima [16]). To increase the efficiency of KDSN fit-
ting in high-dimensional settings, random Fourier transformations
can be applied to the data [15,17].

A difficult problem arising from the flexibility of KDSNs (and
of deep learning methods in general) is the specification of a
large number of tuning parameters. These do not only comprise
the number of KDSN levels (“model selection”) but also several
level-specific parameters needed for Fourier transformations and
regularized kernel estimation. As a consequence, tuning KDSNs
becomes an intrinsically complex and difficult task. Because tra-
ditional grid search strategies require massive computing power
if applied to high-dimensional search spaces [7], many published
results on deep learning are based on human-guided tuning (e.g.
[18,19]), with little details on the optimization of tuning parame-
ters being provided. Obviously, the lack of a data-driven strategy to
select tuning parameters in KDSNs limits the use of the method in
biomedical research.

To address this issue, we propose a fully data-driven frame-
work for parameter estimation and model selection in KDSNs. The
backbone of our method is a hill climbing algorithm (e.g. [20])
that is designed to identify the optimal number of levels in the
network. Within each level, tuning parameters are determined by
application of a Kriging approach for model-based optimization of
prediction accuracy [21–23]. As will be demonstrated in Section 3.1,
the average run-time of the proposed method is considerably
shorter than grid search strategies for backpropagation-based
neural network methods [24]. Regarding predictive performance

(Section 3.2), KDSN modeling within the proposed framework is
competitive with other state-of-the-art techniques for supervised
learning. This will be illustrated by the analysis of two medical data
sets from the Department of Biostatistics’ data repository at Van-
derbilt University (http://biostat.mc.vanderbilt.edu/DataSets) and
another data set that was  extracted from the Health Facts Database
(Cerner Corporation, Kansas City, MO,  see [25]). The latter data
are used to develop a KDSN-based prediction model for hospital
readmission rates of diabetes patients, which is a central issue in
transitional care intervention and hospital discharge planning [26].

2. Methods

In Section 2.1 the basic notation is introduced and a formal
definition of KDSNs is provided. The proposed methodology for
parameter estimation and model selection is described in Sec-
tion 2.2.

2.1. Kernel deep stacking networks

The goal of KDSNs is to derive a prediction rule f(x) for a contin-
uous or binary outcome variable y based on a vector of predictor
variables x ∈ R

d. KDSNs are usually trained on a set of learning
data that are represented by a vector of outcome values y ∈ R

n

and an input data set X = (x1, . . .,  xn)� ∈ R
n×d. We  assume that

the columns of X have been standardized before analysis by their
respective medians and median absolute deviations. As shown in
Fig. 1, the estimation of KDSNs (given fixed values of the tuning
parameters) is carried out by solving a series of regularized kernel
regression problems, emulating the fitting of a multi-layer neural
network [14].

In the first level of a KDSN, the input data are transformed into a
radial basis function (RBF) kernel matrix

K = (K(xi, xj))i,j=1,...,n
∈ R

n×n, (1)

where K(xi, xj):= exp(−
∥∥xi − xj

∥∥2

2
/(2�2)) denotes the RBF kernel

function with scale parameter � [27]. Because the transformation
in Eq. (1) corresponds to a mapping of the input data into an infi-
nite dimensional space [28, pp. 36–39], it can be thought of as
an implicit, large hidden layer in the context of neural networks.
Because radial basis functions are universal function interpolators
[29], solving the regression problem of y on K is based on the same
rationale as fitting a neural network with one hidden layer.

To avoid overfitting, the kernel regression problem can be solved
by applying ridge-regularized estimation, giving rise to the opti-
mization problem

argmin
ˇ

(
(

y − Kˇ
)T (

y − Kˇ
)

+ � ˇT Kˇ) (2)

with parameter vector  ̌ ∈ R
n and tuning parameter � > 0 [14,30].

The vector  ̌ replaces the weights of the interconnections between
the neurons of a neural network. Statistically,  ̌ has the same inter-
pretation as the coefficient vector of a linear regression model with
design matrix K and outcome variable y. The closed-form solution
to (2) is given by

ˆ̌
 = (K + �I)−1y; I ∈ R

n×n, (3)

implying that local optima and convergence problems arising in
neural networks with backpropagation estimation are avoided.
Note that (3) is calculated regardless of whether y is continuous
or binary.

To handle storage and memory problems in situations where n
and K are large, Huang et al. [15] proposed to approximate K by an
additional random Fourier transformation. This strategy, which is
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