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Objective:  Proteins  are  vital  biological  molecules  driving  many  fundamental  cellular  processes.  They  rarely
act alone,  but  form  interacting  groups  called  protein  complexes.  The  study  of protein  complexes  is a
key  goal  in  systems  biology.  Recently,  large  protein–protein  interaction  (PPI)  datasets  have been  pub-
lished  and  a plethora  of  computational  methods  that provide  new  ideas for  the  prediction  of protein
complexes  have  been  implemented.  However,  most  of  the  methods  suffer  from  two  major  limitations:
First,  they  do  not  account  for  proteins  participating  in  multiple  functions  and  second,  they  are  unable  to
handle  weighted  PPI  graphs.  Moreover,  the  problem  remains  open  as  existing  algorithms  and  tools  are
insufficient  in  terms  of  predictive  metrics.
Method:  In  the  present  paper,  we propose  gradually  expanding  neighborhoods  with  adjustment  (GENA),  a
new algorithm  that  gradually  expands  neighborhoods  in  a graph  starting  from  highly  informative  “seed”
nodes.  GENA  considers  proteins  as  multifunctional  molecules  allowing  them  to  participate  in  more  than
one protein  complex.  In addition,  GENA  accepts  weighted  PPI  graphs  by using  a weighted  evaluation
function  for  each  cluster.
Results:  In  experiments  with  datasets  from  Saccharomyces  cerevisiae  and  human,  GENA  outperformed
Markov  clustering,  restricted  neighborhood  search  and  clustering  with  overlapping  neighborhood
expansion,  three  state-of-the-art  methods  for  computationally  predicting  protein  complexes.  Seven PPI
networks  and  seven  evaluation  datasets  were  used  in  total. GENA  outperformed  existing  methods  in
16  out  of  18  experiments  achieving  an  average  improvement  of 5.5%  when  the  maximum  matching
ratio metric  was  used.  Our  method  was  able  to discover  functionally  homogeneous  protein  clusters  and
uncover important  network  modules  in a Parkinson  expression  dataset.  When  used  on  the human  net-
works, around  47%  of the  detected  clusters  were  enriched  in  gene  ontology  (GO)  terms  with  depth  higher
than  five  in  the  GO  hierarchy.
Conclusions:  In  the  present  manuscript,  we  introduce  a  new  method  for  the computational  prediction
of  protein  complexes  by  making  the  realistic  assumption  that  proteins  participate  in  multiple  pro-
tein  complexes  and cellular  functions.  Our  method  can  detect  accurate  and  functionally  homogeneous
clusters.

©  2016  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Proteins are considered the most important players in molecu-
lar interactions. They play a significant role in all cellular functions
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(e.g. transmission of regulatory signals in the cell) and they catalyze
a huge number of chemical reactions. They rarely act isolated, but
they are combined in functional modules with one example of them
being the protein complexes. The prediction of protein complexes
is crucial for understanding the cellular mechanisms and for pre-
dicting the functions of uncharacterized proteins. The experimental
prediction of protein complexes is mainly limited to tandem affin-
ity purification (TAP) [1], which provides erroneous data and is not
cost-effective and time-efficient. TAP results have raised the human
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interactome’s coverage, but also include many false positives and
false negatives [2].

In virtue of the experimental approaches’ limitations,
researchers have recently emphasized in the computational
prediction of protein complexes from protein–protein interaction
(PPI) data by using unsupervised clustering algorithms [3,4]. The
assumption behind most of the methods is the detection of strongly
connected components of proteins that are sparsely connected
to the rest of the graph [5,6]. These algorithms are based on very
different approaches. Most of them require the specification of
a considerable number of parameters, some of which drastically
affect the results.

Clustering as a modelling approach can address the problem
of detecting protein complexes in PPI graphs, however, standard
clustering is not ideal for PPI networks. Proteins may  have multi-
ple functions, and therefore their corresponding graph nodes may
belong to more than one cluster. For instance, 17 pairs of complexes
overlap in the Aloy dataset [7], 40 pairs in the BT 409 dataset [8]
and 215 pairs in the Pu dataset [9]. Such nodes present a challenge
to traditional PPI clustering algorithms and recently, algorithms
that detect overlapping clusters have been proposed [10,11]. More-
over, the state of the art methods for clustering PPI graphs are
usually applied to weighted PPI graphs only after ‘binarizing’ them
by removing weighted edges below a given threshold. The idea of
using the original weighted PPI graphs was introduced recently [12]
and demonstrated a significant improvement in the detection of
protein complexes.

In the present paper, we propose gradually expanding neigh-
borhoods with adjustment (GENA), a fully unsupervised clustering
algorithm, which consists of two steps. In the first step, a greedy
approach is used to initialize the clusters. We  used initial “seed”
vertices with a high potential for cluster formation based on the
clustering coefficient metric. The seed nodes are absorbing neigh-
boring nodes (and gradually forming a growing cluster) based on
an evaluation function, which is defined as a generalized version
of the connectivity in the weak sense (Section 2.2). Each clus-
ter grows independently from the other clusters and as a result
they can overlap. The clusters stop growing when no neighboring
node can improve their evaluation function. In the second step of
“adjustment”, random moves are performed between the clusters
to optimize the clustering solution of the initialization step.

In experiments using public datasets of protein complexes
from Saccharomyces cerevisiae and human, GENA outperformed
restricted neighborhood search (RNSC), Markov clustering (MCL)
and clustering with overlapping neighborhood expansion (Clus-
terONE), which are the state of the art algorithms for predicting
protein complexes. We  performed an extensive analysis by using
several input networks and evaluation datasets. In specific, we used
three weighted PPI graphs and four evaluation datasets for Saccha-
romyces cerevisiae as well as two weighted PPI graphs and three
evaluation datasets for human (Section 2.1).

2. Materials and methods

2.1. Datasets

2.1.1. Protein-protein interactions datasets
In the present paper, six PPI datasets have been used as inputs for

the prediction algorithms. They originate from different organisms
(Saccharomyces cerevisiae and human). Based on the PPI datasets,
we created weighted PPI graphs. For Saccharomyces cerevisiae,  we
used Krogan et al. core and extended datasets [13], Collins et al.
[14] dataset as described in [12]. For human, we  built a network
by using the interactions reported in the human protein reference
database (HPRD).

Krogan et al. [13] have combined results from matrix-assisted
laser desorption/ionization – time of flight (MALDI-TOF) mass spec-
trometry and liquid chromatography coupled with tandem mass
spectrometry (LC–MS/MS) experiments to identify protein–protein
interactions. The reason for using data from two independent
experimental settings was based on the observations that a sin-
gle mass spectrometry method often fails to identify all proteins.
Hence, using data from two  independent methods was expected
to increase the coverage and confidence of the obtained interac-
tome. The results of the two  methods were combined by using a
supervised machine learning approach using hand-curated pro-
tein complexes from the Munich information center for protein
sequences (MIPS) reference database [15] as a gold standard
dataset. A two  round learning phase framework was encoun-
tered coupling the output of Bayesian networks and decision trees
with the stacked generalization algorithm [16]. In the first round,
Bayesian inference networks and 28 different kinds of decision
trees were tested finally settling on three methods: Bayesian net-
works and C4.5-based and boosted decision stumps. The output
of these three methods was  used as the input for a second round
of learning with the stacked generalization algorithm. The out-
put of the stacked generalization algorithm (i.e. a probability value
between 0 and 1) was then thresholded at two different levels to
obtain the core and extended datasets. The Krogan core dataset
included all interactions with posterior probability higher than
0.273, while the extended dataset included all interactions with
posterior probability higher than 0.101 [12].

Collins et al. [14] have combined the experimentally derived PPI
networks of Krogan et al. [13] and Gavin et al. [17] by re-analyzing
the raw primary affinity purification data of these experiments
using a novel scoring technique called purification enrichment
(PE). The PE scores are motivated by the probabilistic socio-affinity
scoring framework of Gavin et al. [17], but also take into account
negative evidence (i.e. pairs of proteins where one of them fails to
appear as a prey when the other one is used as a bait).

The first PPI dataset for the human organism consists of the
protein interactions from the HPRD database [18]. These pro-
tein interactions were filtered using the evolutionary Kalman
mathematical modelling (EVOKALMAMODEL) method proposed
in the human interactome knowledge base (HINT-KB) [19].
EVOKALMAMODEL predicts protein–protein interactions (PPIs) by
fusing sequential, functional and structural PPI data. The extracted
PPI graph consists of 7450 proteins and 21.475 interactions.
The main idea of EVOKALMAMODEL is to construct an optimal
mathematical predictor equation by exploring a pool of given math-
ematical terms. It combines Kalman filtering, an adaptive filtering
technique with a genetic algorithm, a heuristic method based on
the process of natural selection. The genetic algorithm detects the
optimal subset of terms for the predictor’s mathematical equation
and then applies extended Kalman filters to compute its optimal
parameters. The final equation is used to score and filter the protein
interactions.

The second human PPI network is the entire HINT-KB net-
work, which is constructed based on protein interactions included
in the IrefIndex database and predicted as positive by the
EVOKALMAMODEL method [19]. It contains 20845 unique proteins
and 211367 unique interactions and was  selected because it pro-
vides the highest coverage of the human interactome, while at the
same time it is comprised of only confidently predicted interac-
tions. Consequently, it enables the prediction of a high number of
high quality, not previously reported protein complexes.

2.1.2. Evaluation datasets
For Saccharomyces cerevisiae,  four well-studied datasets of pro-

tein complexes were used. The first is the one proposed and
described in [8], which is named BT 409 and consists of 409 pro-
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