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a  b  s  t r  a  c  t

Objectives:  Inspired  by real-world  examples  from  the  forensic  medical  sciences  domain,  we  seek to  deter-
mine  whether  a decision  about  an  interventional  action  could  be  subject  to amendments  on  the  basis  of
some incomplete  information  within  the  model,  and  whether  it would  be  worthwhile  for  the  decision
maker  to  seek  further  information  prior  to suggesting  a decision.
Method:  The  method  is based  on the underlying  principle  of  Value  of Information  to  enhance  decision
analysis  in  interventional  and counterfactual  Bayesian  networks.
Results:  The  method  is applied  to  two real-world  Bayesian  network  models  (previously  developed  for  deci-
sion support  in forensic  medical  sciences)  to examine  the  average  gain  in  terms  of  both  Value  of Information
(average  relative  gain  ranging  from  11.45%  and  59.91%)  and  decision  making  (potential  amendments  in
decision  making  ranging  from  0%  to 86.8%).
Conclusions:  We  have  shown  how  the method  becomes  useful  for decision  makers,  not  only  when  decision
making  is subject  to  amendments  on the  basis  of  some  unknown  risk  factors,  but  also  when  it  is  not.
Knowing  that  a decision  outcome  is  independent  of  one  or  more  unknown  risk  factors  saves  us  from  the
trouble  of  seeking  information  about  the  particular  set of  risk  factors.  Further,  we have  also  extended
the  assessment  of  this  implication  to  the counterfactual  case  and  demonstrated  how  answers  about
interventional  actions  are  expected  to change  when  some  unknown  factors  become  known,  and  how
useful  this  becomes  in forensic  medical  science.

© 2015  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Value of Information (VoI) is a technique initially proposed in
economics [1] for the purposes of:

1. determining the amount a decision maker would be willing to
pay for further information; and

2. prioritising unobserved model factors for acquiring information
based on their impact against a desired utility value or probabil-
ity distribution.

VoI analysis has subsequently been adopted in a number of
domains including finance [2], supply chain management [3],
pharmaceuticals [4], and health care [5].
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An especially important application domain is medicine. For
example, VoI has been used:

1. as a decision analytic approach to clinical trial design and
research priority-setting, by taking into consideration the costs
of sampling, the benefits of the sample information, and the
decision rules of the cost-effectiveness analysis [6];

2. to determine optimal sample size for clinical trials as an
alternative to the more traditional null hypothesis methods
[7–10];

3. for the development and evaluation of clinical trials [11,12];
4. to investigate the expected value of partial perfect information,

and the research decision it can address in medical decision mak-
ing [13];

5. as a guide to evaluate decision support for differential diagnosis
[14];

6. as a decision analysis technique to identify the most beneficial
factors in health economic models [5,15–17].
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For a comprehensive review of VoI analyses related to health
risk management see [18].

In this paper, we are interested in using VoI to determine
whether missing information can lead to different interventional
actions in decision analysis with Bayesian networks (BNs). The use
of VoI for interventions has previously been explored in [19] where
VoI is used to identify novel actions (a process which the authors
call search for opportunities) in influence diagrams, in the sense
that interventions are identified to improve a desirable utility func-
tion. More recently, in [20] VoI is also considered as an evaluation
method for interventional strategies in epidemiology, under com-
peting models, and to quantify the benefit of adaptive versus static
intervention strategies. Our major contribution here is to extend VoI
for interventional decision analysis to the counterfactual setting.
This allows decision makers to compare the observed results of the
actual world to those of a hypothetical world; i.e. what would have
happened had we proposed treatment (or intervention) B instead of
treatment A. To the best of our knowledge, there have been no pre-
vious attempts to incorporate the concept of VoI to counterfactual
problems with BNs.

Our application of VoI is motivated by real-world problems in
forensic medical sciences in which BNs were developed for deci-
sion making. BNs are based on sound foundations of causality and
conditional probability theory. Our objective is to show how VoI
can be applied to BNs to make them especially suitable for sim-
ulating interventions and inferring answers from counterfactual
questions.

The paper is structured as follows: Section 2 describes the
forensic medical science problem motivating this work; Section
3 provides the necessary background overview of the methods:
VoI, BNs, interventional and counterfactual analysis; Section 4
demonstrates the modelling process of integrating VoI analysis
into interventional and counterfactual BN decision analysis mod-
els; Section 5 demonstrates and discusses the results generated
by applying the method to two real-world forensic medical case
studies; we provide our concluding remarks in Section 6.

2. Motivation: the forensic mental health problem

Forensic medical practitioners and scientists based at the Vio-
lence Prevention Research Unit1 (VPRU); Queen Mary University
of London have, for several years, sought improved decision sup-
port for determining care and release of people with mental health
problems. In particular, they are interested in managing the risk
of violent reoffending by releasing such convicted prisoners from
prison and discharging such patients from medium secure services
[21]. In collaboration with the medical practitioners we  have devel-
oped two BN models for this purpose – one for prisoners and one
for patients [22,23]. These models delivered significantly improved
predictive accuracy with respect to whether a prisoner/patient
is determined suitable for release/discharge (hereafter referred
to simply as ‘release’). The models also provided the additional
benefits that causal BN models provide over and above black-
box decision models (see Chapters 2 and 3 of [24] for a detailed
discussion). However, while, those models were developed for
the purpose of simulating interventions (i.e. treatments/therapies)
for violence risk management, prior to releasing an individual,
they did not consider the possibility that decisions about release
could be subject to amendments on the basis of some incom-
plete information within the model. The BN models were large and
complex. Consequently, when assessing an individual for release,

1 Formerly known as Forensic Psychiatry Research Unit (FPRU).

information was  very often missing for variables that could have
been observed.2

Specifically, a decision maker (such as a probation officer or a
clinician) has to determine whether to release a prisoner/patient
based on the probability distribution (or the expected value) of the
hypothesis variable; i.e. the risk of violence assuming release. Prior
to deciding on release, the decision maker has the option to simu-
late various interventions for the purpose of determining whether
an individual’s risk of violence can be managed to acceptable levels.
Additionally, the decision maker may have the option to gather fur-
ther information about the individual. While any set of unknown
information can still be estimated on the basis of Bayesian inference
(via observations provided to other relevant factors within the BN
model) it is still possible that knowing (rather than estimating) one
or more of these unobserved factors, may  lead to amendments in
the probation officer’s original decision about release.

3. Methods

While a detailed description of the four constituent methods,
BNs, VoI analysis, interventional and counterfactual analysis is
beyond the scope of this paper, this section provides sufficient
background to understand the modelling process demonstrated in
Section 4.

3.1. Bayesian networks (BNs)

BNs, also sometimes known as belief networks or causal proba-
bilistic networks, are directed acyclic graphical models [26]. They
consist of nodes which represent uncertain variables, and arcs
which represent causal or influential relationships between the
variables. The ‘Bayesian’ in BNs is due to the use of Bayes’ theo-
rem for revising probabilities. Bayes’ theorem is a simple equation
that specifies how to calculate conditional probabilities:

p(A
∣∣B ) =

p(B
∣∣A ) × p(A)

p(B)

where p(A) is the prior probability of A and p(B|A) is the likelihood
of B given A. The probability p(A|B) is called the posterior probability
of A. In its prior state all of the variables in a BN are uncertain and
assumed to be provisional upon experience/data gained to date.
This prior probability is then revised based on new experience/data,
to provide the updated posterior probability.

Fig. 1 presents a very simple BN with just two variables and one
dependency. The example is based on a well-known probability
problem [25], where a test to detect a disease whose prevalence
is 1 in a 1000 has a false-positive rate of 5%. Fig. 1.1 presents this
problem with both variables being unknown (i.e. the prior marginal
probabilities reflecting the average individual). Further, Fig. 1.2
presents the posterior probabilities for Test given the two possible
knowns for Disease, whereas Fig. 1.3 presents the posterior prob-
abilities for Disease given the two possible knowns for Test. While
case (2) demonstrates how the cause node affects the probabilities
of the effect node, case (3) demonstrates how inference propagates
backwards to the cause node having observed the effect, and this is
what makes BNs unique for decision analysis. For further reading
in BNs see [24,27].

2 Some variables in BNs are supposed to be unobserved. For instance, specific type
of  latent or uncertain synthetic variables. These also include variables representing
symptoms post-treatment, on the basis of some imperfect intervention (see Fig. 3).
In  this paper we  are only interested in variables with missing information; i.e. those
that  are not observed, but could have been observed.
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