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a  b  s  t  r  a  c  t

Objectives:  A recently  introduced  pragmatic  scheme  promises  to be a useful  catalog  of interneuron  names.
We sought  to automatically  classify  digitally  reconstructed  interneuronal  morphologies  according  to
this scheme.  Simultaneously,  we sought  to discover  possible  subtypes  of these  types  that  might  emerge
during  automatic  classification  (clustering).  We  also  investigated  which  morphometric  properties  were
most relevant  for  this  classification.
Materials  and  methods:  A  set  of  118  digitally  reconstructed  interneuronal  morphologies  classified  into  the
common  basket  (CB),  horse-tail  (HT),  large  basket  (LB),  and  Martinotti  (MA)  interneuron  types  by 42  of  the
world’s  leading  neuroscientists,  quantified  by five  simple  morphometric  properties  of  the  axon  and  four
of  the  dendrites.  We  labeled  each  neuron  with  the  type  most  commonly  assigned  to  it  by  the  experts.  We
then  removed  this  class  information  for  each  type  separately,  and  applied  semi-supervised  clustering  to
those  cells  (keeping  the  others’  cluster  membership  fixed),  to  assess  separation  from  other  types  and  look
for the formation  of new  groups  (subtypes).  We  performed  this  same  experiment  unlabeling  the  cells of
two types  at  a time, and  of half  the  cells of  a single  type  at a time.  The  clustering  model  is a  finite  mixture
of  Gaussians  which  we  adapted  for  the  estimation  of  local  (per-cluster)  feature  relevance.  We  performed
the described  experiments  on  three  different  subsets  of the  data,  formed  according  to how  many  experts
agreed on  type  membership:  at least  18 experts  (the  full data  set),  at least  21 (73  neurons),  and  at least
26  (47  neurons).
Results:  Interneurons  with  more  reliable  type labels  were  classified  more  accurately.  We  classified  HT

cells  with  100%  accuracy,  MA  cells  with  73%  accuracy,  and CB and LB cells  with  56%  and  58%  accuracy,
respectively.  We  identified  three  subtypes  of  the  MA  type,  one  subtype  of  CB and  LB  types  each,  and
no  subtypes  of HT  (it  was  a single,  homogeneous  type).  We  got  maximum  (adapted)  Silhouette  width
and  ARI  values  of  1, 0.83, 0.79,  and 0.42,  when  unlabeling  the  HT, CB,  LB, and  MA  types,  respectively,
confirming  the  quality  of  the formed  cluster  solutions.  The  subtypes  identified  when  unlabeling  a  single
type  also  emerged  when  unlabeling  two types  at a time,  confirming  their  validity.  Axonal  morphometric
properties  were  more  relevant  that  dendritic  ones,  with  the  axonal  polar  histogram  length  in  the [�,  2�)
angle  interval  being  particularly  useful.
Conclusions:  The  applied  semi-supervised  clustering  method  can accurately  discriminate  among  CB,  HT,
LB,  and  MA interneuron  types  while  discovering  potential  subtypes,  and  is  therefore  useful  for  neuronal
classification.  The  discovery  of  potential  subtypes  suggests  that some  of  these  types  are  more  heteroge-
neous  that  previously  thought.  Finally,  axonal  variables  seem  to  be  more  relevant  than  dendritic  ones  for
distinguishing  among  the  CB,  HT, LB, and  MA interneuron  types.
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1. Introduction

GABAergic interneurons of the cerebral cortex are key elements
in many aspects of cortical function in both health and disease.
Nevertheless, the classification of GABAergic interneurons is a dif-
ficult task and has been a topic of debate for a long time, since the
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pioneering work of Santiago Ramón y Cajal on the characterization
and identification of interneurons [1]. The difficulty stems from the
high variability of these cells according to morphological, electro-
physiological and molecular features [2]. The scientific community
lacks an accepted catalog of neuron names [3] which makes it
difficult to organize and share knowledge [2]. There is some agree-
ment on the set of morphological, molecular, and physiological
features that can be used to distinguish among types of GABAergic
interneurons [2]. However, a comprehensive classification accord-
ing to those features is difficult to perform in practice [3]. A recent
experiment enabled 42 expert neuroscientists from all around the
world to classify interneurons by visual inspection and according
to pre-selected neuron names [3]. It showed that the experts agree
on the morphological definitions of some of the pre-selected types
while disagreeing on the definitions of others. In particular, some
types seemed to overlap in terms of the cells that were assigned to
them by the experts. In [3], the authors also showed that supervised
classification models can automatically categorize interneurons in
accordance with the opinion of the majority of the experts.

Automatic classification of interneurons has mainly been done
with (unsupervised) clustering; see, e.g., [4–8]. However, super-
vised approaches can be more accurate when there is prior
knowledge about neuronal types [9]. In this study, such knowl-
edge comes from the experts who participated in the experiment
described in [3]. We  can use this knowledge to guide classifica-
tion and simultaneously discover subtypes using semi-supervised
clustering, an approach that lies between the supervised and unsu-
pervised approaches. In doing this, we follow the cluster assumption
[10], i.e., we consider that the instances within a cluster are likely to
belong to the same class whereas a class may  consist of several clus-
ters. In semi-supervised learning [10,11], some data instances are
labeled whereas others are not. Since all our neurons were labeled
by the experts, we fitted the semi-supervised scenario by remov-
ing the labels of (a) one type at a time; (b) two  types at a time;
and (c) half the instances of each type, simultaneously. By doing
this we sought to discover possible subtypes and see if the types
could be automatically discriminated. We  used an adaptation of
the semi-supervised projected model-based clustering algorithm
(SeSProc) introduced in [12]. This is a probabilistic clustering algo-
rithm which estimates the number of clusters and the relevance of
each predictive feature for each of the clusters. The estimation of
feature relevance within model-based clustering was  introduced in
[13].

We  quantified the neurons with nine simple axonal and den-
dritic morphological variables, such as the axonal length close to the
soma, and labeled them according to the choices of the expert neu-
roscientists. In [3] each instance was given up to 42 labels—coming
from the 42 experts that concluded the study. Following a common
practice in supervised learning [14], we reduced this vector of 42
labels to its mode (i.e., the most common value), thus obtaining
a single label per neuron. However, since experts frequently dis-
agreed, such labels were often not reliable, i.e., they were backed
by few experts. To cope with the label noise [15,16] that expert dis-
agreements may  be introducing, we analyzed three subsets of our
neuron population, each with a different minimum of ‘label reli-
ability’, i.e., such that the label of each neuron in the subset was
agreed upon by at least th experts, with th being a ‘label reliability
threshold’.

This paper is an extension of [17] and is the result of close collab-
oration between experts in neuroanatomy and machine learning.1

We  extend the mentioned paper by refining some of the predic-
tor variables, adapting the SeSProC algorithm, and considering two

1 See the affiliations of the two institutions involved.

Table 1
Distribution of interneuron types with respect to label reliability threshold. Lower-
most row shows total number of cells per dataset.

th18 th22 th26

CB 49 24 9
HT  9 5 4
LB  27 19 12
MA  33 25 22

Total 118 73 47

additional experimental settings. The remainder of this paper is
organized as follows: Section 2 describes the materials and meth-
ods we  used; Section 3 reports and discusses the obtained results;
while Section 4 provides conclusions.

2. Materials and methods

2.1. Data

We  used 237 three-dimensional (3D) reconstructions of
interneurons from several areas and layers of the cerebral cortex
of the mouse, rat, and monkey. These neurons were used in [3],
and were originally extracted from NeuroMorpho.Org [18]. From
this population of neurons, we formed subsets by imposing min-
imums  on the number of experts that agreed on the label of an
included cell (i.e., a ‘label reliability threshold’), considering that
a higher threshold yields more confidence in the cells’ labels. We
used thresholds 18, 22 (half plus one out of the 42 experts), and 26
to build three databases: th18, th22, and th26, respectively. These
data sets contained interneurons of four different types (classes):
common basket (CB), horse-tail (HT), large basket (LB), and Mar-
tinotti (MA). Table 1 shows the distribution of different types at the
three label reliability thresholds.

We  characterized each neuron using nine features of axonal and
dendritic morphology. While one may  compute many morpholog-
ical features (e.g., [3] used over 2000 features for classification),
none are known, so far, as good predictors of interneuron type.
Since detailed morphometric information on 3D reconstructed cor-
tical interneurons is relatively scarce (a few hundred reconstructed
neurons are available, comprising different types), it might be coun-
terproductive to use many predictor variables. Therefore, we  kept
the number of variables low by defining variables which capture
how, in our opinion, an expert classifies an interneuron upon visual
examination.

We consider that an expert classifies an interneuron by esti-
mating the distribution and the orientation of axonal and dendritic
arborizations. We  therefore measured the axonal and dendritic
length according to the Sholl (5 features) and polar histogram
(4 features) analyses from NeuroExplorer, the data analysis com-
panion to Neurolucida [19]. Sholl analysis computes axonal and
dendritic length at different distances from the soma whereas the
polar histogram [20] describes the overall direction of dendritic
growth; we only distinguished between two halves of the his-
togram, namely, the bifurcation angles falling in the [0, �) interval
and those falling in the [�, 2�) interval. See Table 2 and Fig. 1 and
for further details on predictor variables. We  standardized all vari-
ables (transformed them so to have zero mean and unit standard
deviation) prior to classification.

While an expert who classifies using a similar rationale can only
roughly estimate these features, our classifier used exact values,
thus possibly being more objective. This is important as some of
the features that we use, such as the length of the axonal arbor at
a certain distance from the soma, are rather hard for an expert to
estimate.
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