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Objective:  This  manuscript  describes  the  use of  a hardware-in-the-loop  simulation  to  simulate  the  con-
trol of  a multivariable  anesthesia  system  based  on an  interval  type-2  fuzzy  neural  network  (IT2FNN)
controller.
Methods  and materials:  The  IT2FNN  controller  consists  of  an  interval  type-2  fuzzy  linguistic  process  as
the antecedent  part  and  an  interval  neural  network  as the  consequent  part.  It has  been  proposed  that  the
IT2FNN  controller  can  be used  for  the  control  of a multivariable  anesthesia  system  to minimize  the effects
of  surgical  stimulation  and  to  overcome  the uncertainty  problem  introduced  by the  large  inter-individual
variability  of  the  patient  parameters.  The  parameters  of  the  IT2FNN  controller  were  trained  online  using
a back-propagation  algorithm.
Results:  Three  experimental  cases  are  presented.  All  of  the experimental  results  show  good  performance
for  the  proposed  controller  over  a wide  range  of  patient  parameters.  Additionally,  the  results  show  bet-
ter  performance  than  the type-1  fuzzy  neural  network  (T1FNN)  controller  under  the  effect  of surgical
stimulation.  The  response  of  the  proposed  controller  has  a smaller  settling  time and  a  smaller  overshoot
compared  with  the T1FNN  controller  and  the  adaptive  interval  type-2  fuzzy  logic  controller  (AIT2FLC).
The  values  of the  performance  indices  for  the  proposed  controller  are  lower  than  those  obtained  for  the
T1FNN controller  and  the  AIT2FLC.
Conclusion:  The  IT2FNN  controller  is  superior  to  the  T1FNN  controller  for  the  handling  of  uncertain  infor-
mation  due  to  the  structure  of type-2  fuzzy  logic  systems  (FLSs),  which  are  able  to model  and  minimize
the  numerical  and  linguistic  uncertainties  associated  with  the inputs  and outputs  of  the  FLSs.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

The type-1 fuzzy neural network (T1FNN) controller combines
the capability of fuzzy reasoning to handle uncertain information
and the capability of artificial neural networks to learn from pro-
cesses [1]. These controllers have been successfully applied in many
fields [2–4]. The T1FNN controller was introduced to handle the
uncertainties found in real systems, but it has been demonstrated
to be limited in the handling of the uncertainties of fuzzy mem-
bership sets and rule-based type-1 fuzzy logic systems (T1FLSs).
Therefore, a type-2 fuzzy set (T2FS) was used.

A T2FS is characterized by a fuzzy membership function (MF)
(i.e., the membership grade for each element of this set is a fuzzy
set in [0,1]), unlike a type-1 fuzzy set, the membership grade of
which is a crisp number in [0,1] [5]. Therefore, a T2FS provides
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additional degrees of freedom that make it possible to model and
handle the uncertainties directly [6]. A type-2 fuzzy logic system
(T2FLS) is also characterized by IF–THEN rules, but its antecedent
or consequent sets are type-2 sets. A T2FLS can be used when the
circumstances are too uncertain to exactly determine the mem-
bership grades, and these have been used in many applications,
particularly in the control system [7–9]. The interval type-2 fuzzy
logic system (IT2FLS) is a special case of the T2FLS [10] in which the
IT2FLS is simpler to work with than a general T2FLS and distributes
the uncertainty evenly among all admissible primary memberships
[11]. The IT2FLS has been applied to various fields with great suc-
cess [12–17]. The purpose of this study was to develop an interval
type-2 fuzzy neural network (IT2FNN) controller that consists of
an interval type-2 fuzzy linguistic process as the antecedent and an
interval neural network as the consequent. The parameters of the
IT2FNN controller were trained using the back-propagation (BP)
method to minimize the difference between the desired and actual
outputs.

The multivariable anesthetic model, which represents mod-
ern general anesthesia, consists of muscle relaxation (MR)
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(i.e., paralysis), unconsciousness (i.e., hypnosis), and analgesia (i.e.,
pain relief) [18]. Two drugs, namely isoflurane and atracurium, are
commonly used for general anesthesia. These drugs elicit the anes-
thesia and MR  signs, which are represented by the mean arterial
blood pressure (MABP) and the evoked electromyogram (EMG),
respectively [19]. There are two main problems associated with
multivariable anesthesia systems [20]. First, the nonlinear structure
of the pharmacodynamics representing the relaxant drug behav-
ior may  make the MR  level saturate with any large control dose.
Second, there is great uncertainty inherited from the large inter-
individual variability of the patient parameters, and a large delay
is associated with this process. Hence, these problems make the
multivariable anesthesia system a very challenging one. The T1FNN
controller has been previously used to control the anesthesia sys-
tem [21–24]. The parameters of the T1FNN controller were trained
using the BP algorithm. Tosun and Güntürkün [24] tested a T1FNN
controller using 10 datasets obtained from four different patients.
In our previous work [25], the interval type-2 fuzzy logic controller
(IT2FLC) and the adaptive interval type-2 fuzzy logic controller
(AIT2FLC) were proposed for controlling the multivariable anes-
thesia system. Our results showed that the AIT2FLC rather than
the IT2FLC is able to respond to the uncertainty introduced by the
large inter- and intra-individual variability of patient parameters.
In this paper, the IT2FNN controller was proposed for control-
ling the multivariable anesthesia system. The test was performed
using a hardware-in-the-loop (HIL) simulation. The results of the
proposed IT2FNN controller were compared with those obtained
with a T1FNN controller and an AIT2FLC. The robustness of the
IT2FNN controller was expected to provide some performance
improvements compared with the performance achieved with a
T1FNN controller and an AIT2FLC due to the reduced effects of
the inter-individual variability of patient parameters and surgical
stimulations.

This paper is organized as follows. In Section 2, the IT2FNN con-
troller is presented. The description of the mathematical model of
the multivariable anesthesia system is presented in Section 3. The
HIL simulation of the multivariable anesthesia system is described
in Section 4. Section 5 details the experimental results, and Section
6 presents the conclusions.

2. IT2FNN controller

Fig. 1 shows a 2-D interval type-2 Gaussian MF  with a fixed
mean, m,  and an uncertain standard deviation in [�1, �2]. This MF
can be expressed as Eq. (1) [26]:
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The T2FS is found in a region called the footprint of uncertainty
and is bounded by an upper membership and a lower membership,
which are denoted �̄Ã(x) and �

Ã
(x′), respectively.

The network structure of the IT2FNN controller is shown in Fig. 2.
This controller consists of an interval type-2 fuzzy linguistic process
as the antecedent and a three-layer interval neural network as the
consequent. In the following derivation, the superscripts of all of the
symbols shown in Eqs. (2)–(7) represent the number of the layer of
the IT2FNN controller. The IF–THEN rule for the IT2FNN controller
can be expressed as
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where f = 1, 2, . . .,  n is the rule number, x1
1. . .x1

m are the inputs of the

IT2FNN controller, and M̃f
1. . .M̃f

m are the interval type-2 fuzzy sets

Fig. 1. Interval type-2 fuzzy set with uncertain mean.

(IT2FSs) of the antecedent part.
[

w4
RF , w4
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]
is a centroid set with the

membership grade of the secondary MF  set to unity, which can be
called the weighting interval set and is derived from IT2FSs in the
consequent partition. This centroid set refers to the collection of
centroids from all of the embedded T1FLSs. The IT2FNN controller
is introduced as follows in each layer [27]:

(1) Layer 1 – Input layer: For every node i in this layer, the node
input and the node output are represented as

net1
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i , u1
i = f 1

i (net1
i (N)) = net1

i (N), i = 1, 2 (3)

where N denotes the number of iterations.Layer 2 Membership
layer: In this layer, each node performs an interval type-2 fuzzy
MF,  as shown in Fig. 1. For the jth node,
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2, mij and �ij are the
mean and the standard deviation, respectively, of the Gaussian MF
in the jth term of the ith input linguistic variable x2

i
to the node of

layer 2, and s is the number of the linguistic values with respect
to each input node. As shown in Fig. 1, a type-2 MF  can be repre-
sented as an interval bound by an upper MF  �̄Ã(x) and a lower MF
�

Ã
(x). Therefore, the output of layer 2, u2
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Layer 3 Rule layer: Each node k in this layer is denoted by
∏

which multiplies the input signals and outputs the result. For the
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where x3
j

represents the jth input to the node of layer 3, w3
jk

are the
weights between the membership layer and the rule layer and are
set to unity to simplify the implementation for real-time control,
and n is the number of rules. Similar to layer 2, the output of layer
3 is represented as [u3

k
(N), ū3

k
(N)].
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