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a  b  s  t  r  a  c  t

Objective:  Design,  implement,  and  validate  an  unsupervised  method  for  tissue  segmentation  from
dynamic  contrast-enhanced  magnetic  resonance  imaging  (DCE-MRI).
Methods:  For  each  DCE-MRI  acquisition,  after  a spatial  registration  phase,  the time-varying  intensity  of
each  voxel  is  represented  as  a sparse  linear  combination  of  adaptive  basis  signals.  Both  the basis  signals
and  the  sparse  coefficients  are learned  by minimizing  a functional  consisting  of  a  data  fidelity  term
and  a sparsity  inducing  penalty.  Tissue  segmentation  is then  obtained  by  applying  a  standard  clustering
algorithm  to the  computed  representation.
Results:  Quantitative  estimates  on  two  real  data  sets are  presented.  In the  first case,  the  overlap  with  expert
annotation  measured  with  the  DICE  metric  is  nearly  90%  and  thus  5% more  accurate  than  state-of-the-art
techniques.  In the  second  case,  assessment  of  the  correlation  between  quantitative  scores,  obtained  by
the  proposed  method  against  imagery  manually  annotated  by two experts,  achieved  a  Pearson  coefficient
of  0.83  and  0.87,  and  a Spearman  coefficient  of  0.83  and  0.71,  respectively.
Conclusions:  The  sparse  representation  of  DCE  MRI  signals  obtained  by means  of  adaptive  dictionary
learning  techniques  appears  to  be well-suited  for  unsupervised  tissue  segmentation  and  applicable  to
different  clinical  contexts  with  little  effort.

© 2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

Dynamic contrast-enhanced magnetic resonance imaging (DCE-
MRI) is a powerful imaging modality which, by allowing for the
investigation of biological processes along the temporal axis, pro-
vides information about perfusion, capillary permeability, and
tissue vascularity [1]. Typically, DCE-MRI is obtained by acquir-
ing a series of T1-weighted sequences before,  during,  and after
the injection of a contrast agent, such as gadoterate meglumine
(Gd-DOTA). The contrast agent uptake is higher where the vascu-
larization is stronger, resulting in signal enhancement and brighter
image intensities after the injection. Clinically relevant, quantita-
tive information can be extracted by a voxel-wise analysis of the
time-varying intensity signal, also known as enhancement curve,
which shows a stereotyped behavior across voxels of the same
tissue.
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From the computational viewpoint the analysis of DCE-MRI
poses several problems arising from the large amount of noise
affecting the signal, patient movements during acquisition, and the
need of discriminating between different tissues. Recently, several
computational methods based on DCE-MRI have been proposed
for quantitative assessment of several diseases like prostate can-
cer [2], breast cancer [3,4], cardiac and cerebral ischemia [5], renal
dysfunction [6], and rheumatoid arthritis [7,8].

This paper presents a data driven method for unsupervised
tissue segmentation from DCE-MRI acquisition. Aside from the
manual selection of a region of interest (ROI) the method is auto-
matic. Given a DCE-MRI acquisition, after a preliminary stage in
which signal distortions due to patient movement are attenuated
by means of a motion compensation technique, a sparse repre-
sentation is obtained from a dictionary of basis signals learned
from the data. Since the basis signals resemble the prototypical
behavior of the enhancement curves corresponding to different
tissues, tissue segmentation is effectively achieved by applying
standard clustering techniques on the obtained representation.
By computing a different dictionary of basis signals for each
dataset, our method exploits in full the adaptivity of dictionary
learning.
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Fig. 1. An example of motion compensation. (a) Image at time t1. (b) Image at time t2, in which a wide movement of right kidney in the ROI is highlighted. (c) The computed
displacement field in the ROI, displayed at a larger scale. (d) The image at time t2 after motion compensation.

The rest of this paper is organized as follows: in Section 2 the
literature on DCE-MRI analysis is overviewed. Section 3 describes
the proposed technique, while Section 4 presents the experimental
results obtained on synthetic and real data. Finally, we draw our
conclusions in Section 5.

2. Related work

In the literature, DCE-MRI analysis is tackled by means of two
different parametric approaches: the first approach relies on a
pharmacokinetic model of the contrast agent dynamics tuned to the
specific process (or disease) under study [2,4,5]. Consequently, the
estimated parameters have a direct physiological interpretation.
The second approach parametrizes the shape of the enhancement
curves with no direct link to the problem physiology [3,7–9].
Segmentation is achieved after fitting a geometric model on the
acquired enhancement curves.

In other methods, feature vectors extracted from the raw data
[10], or the raw data directly [6], are used as a basis for dis-
criminating among different tissues, by means of supervised and
unsupervised classification methods respectively. In all these cases,
the proposed algorithms are fine-tuned to the specific medical con-
text and often require a fair amount of work in the construction of
the feature models.

Over the last decades, the signal processing community has
shown a growing interest on adaptive sparse coding, starting from
the seminal work of Olshausen and Fields [11]. Instead of using
over-complete, fixed dictionaries, like Wavelets [12], an adaptive
dictionary and the corresponding sparse-codes are learnt from data
within an optimization framework (see [13–19] for example). Very
good results have been reported in denoising [13], compression
[13], scene categorization, object recognition (see [20,15] for more
examples) and image super-resolution. Other works cast the dictio-
nary learning problem as a factor-analysis problem, with the factor
loading corresponding to the number of the dictionary elements
used: in this case the number of atoms is automatically obtained.
Other works use non-parametric Bayesian methods [21,22] and the
Indian buffet process [23,24].

The use of temporal-curves instead of image patches has been
proposed by [25] on electromyographic data and, independently, by
us in a preliminary conference version of this paper, [26], on DCE-
MRI  data. In [25] the proposed method computes dictionary and
sparse codes of 1-D dimensional signals acquired over time, in order
to learn interpretable spatio-temporal primitives from motion cap-
ture data and to differentiate between spatio-temporal primitives
by using the obtained atoms. The problem is formulated as a tensor
factorization problem with tensor group norm constraints over the
atoms as well as smoothness constraints.

3. The proposed method

In this section we describe the three stages of the proposed
method: motion compensation, learning the representation, and
tissue segmentation.

3.1. Motion compensation

During the past three decades several registration techniques
have been developed and widely applied to medical imaging.
Motion correction of DCE-MRI time series is a particular case of
image registration, in which tissue motion and deformation are the
result of breathing and sudden, sussultatory movements combined
with perfusion of the contrast agent: strong deformation and large
displacements are especially prominent in dynamic cardiac imag-
ing [27,28], breast imaging [29], and abdominal imaging [30]. In all
these cases, a registration procedure is mandatory and may pose
difficult computational problems.

In this work, even if the acquisition process lasts from
6 to 20 min, deformation and displacement are usually quite
small. Spatial registration is necessary to compensate for the
slight motion artifacts produced by the presence of soft tis-
sues in the kidney, whilst is almost never needed in the wrist.
Consequently, in this work, we adopt a simple motion com-
pensation method based on standard optical flow computation:
in particular, we employ a 2-dimensional optical flow method
available in the Insight Toolkit Library (ITK). Given the sim-
plicity of the given registration tasks, the adopted procedure
produces results adequate for our purpose. As shown in Fig. 1,
motion compensation is only performed within a ROI  outlined by
hand.

3.2. Learning the representation

The idea behind sparse and adaptive dictionary learning is to
represent a certain family of signals, in our case enhancement
curves, as linear combination of a few elements selected from a
dictionary of basic signals, called atoms.  As already mentioned,
both the atoms and the coefficients of the linear combinations are
learned from the input data.

Let us now briefly review dictionary learning in the special
case of time-varying signals like DCE-MRI data. We denote an
enhancement curve sampled at times t = 1, . . .,  p by means of a
p-dimensional vector x = (x1, . . .,  xp)

�
. Without loss of generality

we also assume that, for all t, xt measures the difference between
the samples at time t and 1. This is equivalent to set x1 = 0 for
every x.
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