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a  b  s  t  r  a  c  t

Objective:  To  propose  a new  flexible  and  sparse  classifier  that  results  in interpretable  decision  support
systems.
Methods:  Support  vector  machines  (SVMs)  for  classification  are  very  powerful  methods  to  obtain  clas-
sifiers  for  complex  problems.  Although  the  performance  of  these  methods  is  consistently  high and
non-linearities  and  interactions  between  variables  can  be  handled  efficiently  when  using non-linear
kernels  such  as the  radial  basis  function  (RBF)  kernel,  their  use  in  domains  where  interpretability  is  an
issue  is hampered  by their  lack  of  transparency.  Many  feature  selection  algorithms  have been  developed
to  allow  for  some  interpretation  but the  impact  of the  different  input  variables  on the  prediction  still
remains  unclear.  Alternative  models  using  additive  kernels  are restricted  to  main  effects,  reducing  their
usefulness  in  many  applications.  This  paper  proposes  a new  approach  to expand  the  RBF  kernel  into
interpretable  and  visualizable  components,  including  main  and  two-way  interaction  effects.  In  order  to
obtain  a sparse  model  representation,  an iterative  l1-regularized  parametric  model  using the  interpretable
components  as  inputs  is proposed.
Results:  Results  on  toy  problems  illustrate  the  ability  of  the  method  to select  the correct  contributions  and
an  improved  performance  over  standard  RBF  classifiers  in  the  presence  of  irrelevant  input  variables.  For
a  10-dimensional  x-or  problem,  an SVM  using  the  standard  RBF  kernel  obtains  an  area  under  the receiver
operating  characteristic  curve  (AUC)  of 0.947,  whereas  the  proposed  method  achieves  an  AUC  of  0.997.
The  latter  additionally  identifies  the  relevant  components.  In a second  10-dimensional  artificial  problem,
the  underlying  class  probability  follows  a logistic  regression  model.  An  SVM with  the  RBF  kernel  results
in  an  AUC  of  0.975,  as apposed  to  0.994  for the  presented  method.  The  proposed  method  is applied  to
two  benchmark  datasets:  the  Pima  Indian  diabetes  and  the  Wisconsin  Breast  Cancer  dataset.  The  AUC is
in both  cases  comparable  to  those  of the  standard  method  (0.826  versus  0.826  and  0.990  versus  0.996)
and  those  reported  in  the  literature.  The  selected  components  are  consistent  with different  approaches
reported  in  other  work.  However,  this  method  is able  to visualize  the  effect  of  each  of  the  components,
allowing  for  interpretation  of the learned  logic  by  experts  in  the  application  domain.
Conclusions:  This  work  proposes  a new  method  to  obtain  flexible  and  sparse  risk  prediction  models.  The
proposed  method  performs  as  well  as  a support  vector  machine  using  the  standard  RBF  kernel,  but  has  the
additional  advantage  that  the resulting  model  can  be interpreted  by  experts  in  the  application  domain.

© 2013 Elsevier B.V. All rights reserved.

1. Introduction

Machine learning methods [1–3] are increasingly used to clas-
sify data. They are specifically powerful in higher dimensions and
when the effects of the variables are assumed to be non-linear or
interacting with each other. A disadvantage of these methods is
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their inherent black-box nature and as such the resulting models
do not reveal any information on the contribution of each specific
input variable on the predicted outcome. In many applications, such
as medical and financial decision making, interpretability of the
prediction model is considered more important than best perfor-
mance. The use of standard machine learning methods in practice
is therefore hampered in these domains.

Interpretability of prediction models can have different mean-
ings. In this work we will concentrate on two  parts of interpretable
models. Firstly, unnecessary variables should be discarded in the
final model. Secondly, the impact of the value of the different
input variables on the prediction should be clear. Both of these
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requirements have been studied in the literature, but weaknesses
in the proposed approaches still remain and methods simulta-
neously tackling both aspects are rare. Different feature selection
methods for support vector machines (SVMs) and in extension for
least-squares support vector machines have been proposed. Three
main approaches can be identified. A first approach filters irrelevant
inputs out before building the classifier on the selected set. One pos-
sibility is to rank inputs according to some criterion, e.g. Fisher’s
criterion, Pearson correlation or mutual information criteria [4,5].
More advanced approaches such as relief and focus have been pro-
posed in [6–8]. Although filter approaches are very efficient w.r.t.
computation, this approach might not be optimal [9,10]. A second
approach involves wrappers that use the performance of a specific
classifier to rank subsets of variables. The least informative input
(or set of inputs) is removed in an iterative procedure until conver-
gence. One example is the recursive feature elimination SVM [11],
that iteratively eliminates the input with the lowest difference in
the margin when calculating the kernel matrix without this input.
Similar approaches using different ranking functions were pro-
posed in [12,13]. More recent work has focused on the embedding
of feature selection within the classifier. Many of these approaches
solve the feature selection task by replacing the 2-norm in standard
SVMs by a 0-norm, a 1-norm or approximations and combinations
of these [14–18]. A drawback of these approaches is that feature
selection is performed in the primal model formulation, restricting
its use to linear models. Several methods are reported to deal with
feature selection in the dual formulation. However, these methods
most often result in sparsity in the features determined in feature
space and not in the input space. Since the resulting features can-
not be interpreted in function of the input variables, these methods
are not suitable for applications where interpretability is an issue.
Only some approaches study the combination of feature selection
in input space while optimizing the dual problem formulation as (a
relaxation of) mixed integer programming problems [19,20]. Mal-
donado et al. [21] proposed to learn an anisotropic kernel, where
the bandwidth w.r.t. the different inputs was varied and inputs with
a large bandwidth are subsequently eliminated.

Another approach that is often used to enable interpretation of
SVMs are rule extraction methods [22,23]. However, the approach
of these methods is quite different from the one presented in this
manuscript. The learned rules give an explanation of the model but
they are not equal to the model. The rules only mimic  the orig-
inal model and are thus an approximation of the learned logic
of the SVM. Decision rules are a binary approximation to the
smooth response function. Our method makes the response func-
tion explicit in its variable specific components and for pairwise
interactions. Additionally, there is no mechanism controlling the
difference in performance between the original model and the
learned rules. The intention of this work is to provide flexible meth-
ods that are interpretable by design, and contain an explicit control
mechanism on the performance.

In order to allow for an explanation of the model’s prediction,
models are often restricted to be additive [24,25]. Thanks to the
additive structure, the contribution of each input variable to the
prediction is clear. However, several classification problems cannot
be solved using a sum of main effects. The use of ANOVA models
[26], extending the additive structure to incorporate a number of
predefined interaction terms, offers a solution to this problem. In
its general form, the ANOVA decomposition is composed as the
sum of the main effects and all possible combinations of inputs. For
most practical applications demanding an interpretable prediction
model, reducing this decomposition to main and two-way inter-
action effects is sufficient [27,28]. An additional advantage of this
approach is the possibility to visualize the effects and thus enable
validation of the resulting models by experts in the application
domain. ANOVA models for component selection where proposed

in [29–31]. The kernel approach taken by Gunn and Kandola [32]
for regression problems is most strongly related to the work pre-
sented here for classification. They replace the kernel by means of a
weighted sum of kernels. The problem is then solved by iteratively
solving two convex optimization problems: (i) solve the problem
in the Lagrange multipliers, fixing the weights in the sum of ker-
nels; and (ii) solve the problem in the weights, fixing the Lagrange
multipliers. Their approach is restricted to kernels without hyper-
parameters to reduce computational load.

The goal of this work is to combine component selection with
SVMs using the radial basis function (RBF) kernel in order to obtain
flexible but interpretable models. We  propose to replace the RBF
kernel by a truncated version, containing only main and two-way
interaction effects. Using this kernel, a standard SVM is solved. In
a second step, the different contributions to the prediction of the
SVM classifier are calculated and used as input variables for a lin-
ear and iteratively reweighted l1-regularized SVM. The result is a
white box RBF classifier with component selection. In this work, we
explicitly choose to restrict the components to main and two-way
interaction effects to facilitate the visualization of the effect of the
different components on the prediction. In most clinical research,
main effects are considered and when assumed necessary, interac-
tions are added [27,28].

The remainder of the paper is organized as follows. Section 2
starts with introducing the notations used throughout the paper
and summarizes support vector machines for classification. In Sec-
tion 2.2 we  illustrate how the RBF kernel can be represented as a
sum of kernels evaluated on subsets of the input variables. Sec-
tion 2.3 proposes a method to obtain sparse results. Section 2.4
indicates how the results can be interpreted in clinical practice.
Section 3 discusses the model selection aspects of this work. Our
approach is illustrated on toy problems and real life classification
problems in Section 4. Section 5 summarizes some final conclu-
sions.

2. A white box RBF classifier

In this section, we  propose a novel approach to obtain sparse and
interpretable classifiers that are able to select relevant (non-)linear
and interaction effects. The standard RBF kernel is truncated to only
include main and two-way interaction effects. These effects are
then combined in a sparse way  by solving an iteratively reweighted
l1-regularized SVM in primal space.

2.1. Support vector classifier

Let D  = {(xi, yi)}N
i=1 be a set of observations, with xi ∈ R

d the input
variables of observation i and yi ∈ { −1, 1} the corresponding class
label. The standard SVM for classification [1] is then formulated as
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(1)

In this notation, ϕ(·) represents a feature map, mapping the
input variables into a (possibly infinite) feature space; w ∈ R

dϕ

is a coefficients vector and � is a strict positive regularization
parameter making the trade-off between smoothness and correct
classification of the training data. When solving this problem in
primal space, the feature map  needs to be specified explicitly and
a prediction for a new point x� is obtained from

ŷ = sign(wT ϕ(x�) + b).
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