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a  b  s  t  r  a  c  t

Introduction:  The  length  of stay  of critically  ill patients  in the  intensive  care  unit  (ICU)  is an  indication  of
patient  ICU  resource  usage  and  varies  considerably.  Planning  of  postoperative  ICU  admissions  is  important
as  ICUs  often  have  no nonoccupied  beds  available.
Problem statement:  Estimation  of the  ICU  bed  availability  for the  next  coming  days  is entirely  based  on
clinical  judgement  by  intensivists  and  therefore  too  inaccurate.  For  this  reason,  predictive  models  have
much  potential  for  improving  planning  for ICU patient  admission.
Objective:  Our  goal  is  to develop  and  optimize  models  for patient  survival  and  ICU  length  of  stay  (LOS)
based  on  monitored  ICU  patient  data.  Furthermore,  these  models  are  compared  on  their  use  of sequential
organ  failure  (SOFA)  scores  as  well  as  underlying  raw  data as  input  features.
Methodology:  Different  machine  learning  techniques  are  trained,  using  a  14,480  patient  dataset,  both  on
SOFA scores  as  well  as  their  underlying  raw  data  values  from  the  first  five  days  after  admission,  in  order
to predict  (i)  the  patient  LOS,  and  (ii) the  patient  mortality.  Furthermore,  to  help  physicians  in  assessing
the  prediction  credibility,  a probabilistic  model  is  tailored  to the  output  of our  best-performing  model,
assigning  a belief  to each  patient  status  prediction.  A two-by-two  grid  is  built,  using  the  classification
outputs  of the  mortality  and  prolonged  stay  predictors  to improve  the  patient  LOS  regression  models.
Results:  For  predicting  patient  mortality  and  a  prolonged  stay,  the  best  performing  model  is  a  support
vector  machine  (SVM)  with  GA,D = 65.9%  (area  under  the  curve  (AUC)  of  0.77)  and  GS,L =  73.2%  (AUC of
0.82).  In  terms  of  LOS  regression,  the  best  performing  model  is  support  vector  regression,  achieving  a
mean  absolute  error  of  1.79  days  and a median  absolute  error  of  1.22  days  for  those  patients  surviving  a
nonprolonged  stay.
Conclusion:  Using  a classification  grid  based  on  the  predicted  patient  mortality  and  prolonged  stay,  allows
more  accurate  modeling  of  the  patient  LOS.  The  detailed  models  allow  to  support  the  decisions  made  by
physicians  in  an  ICU  setting.

©  2014  Elsevier  B.V.  All  rights  reserved.

1. Introduction

1.1. Problem statement

The patient length of stay (LOS) is often seen as an indication of
the patient resource usage in the intensive care unit (ICU) [1]. Cur-
rently ICU physicians generally plan only a single day ahead based

∗ Corresponding author. Tel.: +32 9 331 49 42.
E-mail address: rein.houthooft@intec.ugent.be (R. Houthooft).

on clinical judgement. Automated scheduling assistance based on
patient survival and LOS predictions would be beneficial in opti-
mizing ICU resource usage, e.g., estimating the number of occupied
beds, as well as individualized patient care. Moreover, this enables
the adaptation of surgery scheduling to the predicted ICU load.
In addition, predictive ICU models could be a building block in
the larger process of making do not resuscitate (DNR) decisions to
determine whether to stop patient therapy to avoid unnecessary
suffering and treatment costs.

In this work, machine learning techniques are trained based on
the sequential organ failure (SOFA) score [2–5], a score assessing
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the daily individual degree of organ failure. The SOFA score is an
objective score that allows for calculation of both the number and
the severity of organ dysfunction in six organ systems (respira-
tory, coagulation, liver, cardiovascular, renal, and neurological). The
score can measure individual or aggregate organ dysfunction over
time and is useful to evaluate morbidity. Although the SOFA scoring
was not developed to predict outcome, the obvious relationship
between organ dysfunction and mortality has been demonstrated
in several studies [3,6,7].

Moreover, patient mortality and LOS estimation is studied in a
live monitoring setting by taking into account not only data from
the first few days after admission, but also from a moving data
window. This allows us to predict the status for a patient with an
arbitrary current LOS. Additionally, our models assign a degree of
certainty to their classification outputs, allowing ICU physicians to
adapt their interpretation of the model to its credibility.

1.2. Related work

In previous studies, ICU patient mortality and LOS modelling has
been conducted by taking into account patient data only from day
one [8,9]. These studies generally focus on determining whether a
patient will have a prolonged stay, i.e., a LOS crossing some pre-
defined threshold. [10] apply machine learning models trained on
monitored data from the first five days after patient admission, to
predict the patient prolonged LOS, using a 350,000 patient dataset.
Contrary to their approach we examine the use of SOFA scores
as well as raw data for ICU modelling purposes. SOFA scores are
used in a dynamic Bayesian network setting by Sandri et al. [11]
to predict sequences of organ failures in a dataset of 79 critically
ill patients, however they focus on predicting sequences of organ
failures rather than the patient LOS or mortality. Meyfroidt et al.
[12] have applied Gaussian processes in ICU patient LOS modelling.
They focus on information monitored in the first 4 h after admis-
sion and focus on LOS prediction of 960 patients undergoing cardiac
surgery. Silva et al. [13] also make use of SOFA scores to build pre-
dictive ICU models using a 4425 patient dataset, however their
goal is to predict individual organ failures rather than patient mor-
tality, prolonged stay and LOS. Furthermore, [14] have applied a
variety of machine learning techniques to model ICU patient sur-
vival for a dataset of approximately 1623 patients. However, they
focus on a specific patient subset which prevents straightforward
generalization of their results.

1.3. Paper organization

The remainder of this paper is structured as follows. In Section 2,
we elaborate on the applied predictive models and feature selection
methods. Section 3 describes the data used for the applied mod-
elling techniques and sets forth the SOFA score. Hereafter, Section
4 outlines the conducted experiments as well as their results, after
which these are discussed in Section 5. Finally, in Section 6 general
conclusions are highlighted.

2. Predictive modelling

The survival as well as the prolonged stay prediction are mod-
elled by classification techniques, while the numeric patient LOS
is modelled via regression. In this work the following methods are
used for classification: artificial neural networks (ANNs) [15], k-
nearest neighbors (k-NN) [16], support vector machines (SVMs)
[17], classification trees (CART) [18], random forests (RF) [19] and
adaptive boosting (AdaBoost) [20]. For regression we  use: ANNs,
k-NN, RF, support vector regression (SVR) [17], Relevance Vector
Regression (RVR) [21] and regression trees (CART) [18]. Some of
the experiments are executed using models implemented by SUMO

Toolbox [22]. To select the most relevant features both backward
elimination and RF, as an importance ranker, are used. In the follow-
ing paragraphs these applied modelling techniques are described
briefly.

2.1. Support vector machines

Support vector machines (SVMs) [17] are sparse kernel
machines, a type of models that rely only on a subset of data,
the support vectors, to predict unknown values. Additionally, they
allow the use of kernels which allow the projection of input data to
a different, possibly higher-dimensional space. The model separa-
tes the input data by means of a good-fitting hyperplane into two
classes. Kernels can be used to transform this hyperplane into a
nonlinear input separator, making it a very effective classifier. The
SVMs used in this work have the following tunable parameters: a
cost term C that controls the misclassification tolerance and acts as
a regularization parameter, and one or more kernel parameters.

2.1.1. Probabilistic SVMs
On top of predicting a class, we would like our models to assign

a probability, a belief, that a sample is classified correctly. This is
done by means of a probabilistic extension of the SVM [23]. As such,
a probability

P(y = 1|x) (1)

is given for each prediction. This is achieved by – next to optimizing
the hyperplane decision boundary – fitting a sigmoid function

P(y = 1|x; A, B) = 1
1 + exp (Ay(x) + B)

(2)

on the decision values y of the SVM classifier. Herein the parameters
A and B are estimated by running a maximum likelihood algorithm
for Eq. (2) over the original training set.

2.2. Support vector regression

Support vector regression (SVR) [17] is the application of SVMs
to regression tasks, in which a linear function is fit through the
training set. In this work �-SVR is used, which builds a tube around
the fitted curve in which the data points have a zero cost value.
Doing so allows us to fit a curve in such a way that many points
reside inside this tube. Again, the predictions only depend on a sub-
set of data, the support vectors, which lie on the tube boundaries.
Also, kernels can be used to transform the linear fit to a nonlinear
curve. The parameters used are the radius � of the tube, which con-
trols the tolerance towards deviation from the fitted curve and acts
as a regularization parameter, and one or more kernel parameters.

2.3. Relevance vector machines

SVMs require cross-validation in order to optimally tune their
parameters. Furthermore, they cannot capture output uncertainty
naturally. Relevance vector machines (RVMs) [21] resemble SVMs,
but apply a Bayesian approach to learning by introducing a prior
distribution of the SVM weights. They are also sparse as most of
the posterior weight distributions concentrate around zero and are
hence negligible. The nonzero weights, called relevance vectors,
are, unlike SVMs, not based on their distance to a hyperplane or
tube. Furthermore, they require less parameter tuning than SVMs,
but it can be computationally expensive to train them on large
datasets. The regression version of the RVM is called Relevance
Vector Regression (RVR).
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