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a b s t r a c t

Objective: This paper explores the importance of the latent symmetry of the brain in computer-aided
systems for diagnosing Alzheimer’s disease (AD). Symmetry and asymmetry are studied from two points
of view: (i) the development of an effective classifier within the scope of machine learning techniques,
and (ii) the assessment of its relevance to the AD diagnosis in the early stages of the disease.
Methods: The proposed methodology is based on eigenimage decomposition of single-photon emission-
computed tomography images, using an eigenspace extension to accommodate odd and even
eigenvectors separately. This feature extraction technique allows for support-vector-machine classifi-
cation and image analysis.
Results: Identification of AD patterns is improved when the latent symmetry of the brain is considered,
with an estimated 92.78% accuracy (92.86% sensitivity, 92.68% specificity) using a linear kernel and a
leave-one-out cross validation strategy. Also, asymmetries may be used to define a test for AD that is
very specific (90.24% specificity) but not especially sensitive.
Conclusions: Two main conclusions are derived from the analysis of the eigenimage spectrum. Firstly,
the recognition of AD patterns is improved when considering only the symmetric part of the spectrum.
Secondly, asymmetries in the hypo-metabolic patterns, when present, are more pronounced in subjects
with AD.

© 2012 Elsevier B.V. All rights reserved.

1. Introduction

Alzheimer’s disease (AD) is the most common cause of demen-
tia among people over the age of 65. A considerable amount of new
information has been gathered over the last 30 years concerning the
factors responsible for AD, which has resulted in the development
of new treatments. Although extensive clinical studies have charac-
terized the time course of many cognitive and behavioral measures,
and clinical data has been correlated with autopsy findings, a final
cure remains undiscovered. In order to test and develop medical
treatments and cure, early and accurate diagnosis is crucial.

The diagnosis of AD is a field of active research that includes
studies of biological markers associated with the disease, and
neuropsychological testing or neuroimaging techniques such as
functional and structural brain imaging. Single-photon emission-
computed tomography (SPECT) imaging offers the opportunity to
explore functional brain behavior, as the regional cerebral blood
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flow. Even though the perfusion pattern and its evolution is not
the same for all patients, there do seem to be some typical hypo-
perfusion patterns for the disease, such as the temporo-parietal
region or the posterior cingulate gyri and precunei. Still, no single
perfusion pattern differentiates AD patients from healthy subjects.
The value of SPECT as an objective diagnostic tool for AD may
depend on the degree to which abnormal metabolic patterns can
be detected by quantitative classification methods.

Much of the AD literature suggests that early manifestations
of AD occur in a prodromal stage, years before the symptoms of
the disease appear and are clinically detectable. This makes it suit-
able to use non-invasive techniques such as nuclear imaging for
detection. The examination of the predictive abilities of nuclear
imaging with respect to AD in this early stage has been widely stud-
ied, through visual assessments performed by experts[1–4], or by
means of voxel-wise statistical analysis such as SPM, NEUROSTAT
& 3D-SSP, ANOVA or MANCOVA [5–12]. Recently, a new branch of
emerging research has shown that machine-learning techniques
may also be powerful analysis tools for brain imaging. As an exam-
ple, recent works have been published that adapt state-of-the-art
computer-vision techniques in magnetic-resonance imaging for
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early AD diagnosis [13,14], support-vector-machine (SVM) clas-
sification in SPECT [15–18], or positron-emission-tomography
analysis [19,20]. This framework, which is geared towards decision-
making, usually considers feature vectors containing a set of voxels,
allowing for a regional or global brain-image analysis, which is
contrary to voxel-wise statistical tools. On the other hand, the
framework suffers from the small-sample-size problem. This signif-
icant problem, associated with pattern-recognition systems, occurs
when the number of available features for designing the classi-
fier is very large compared with the number of available training
examples.

Symmetry has profound and important implications with regard
to recognition and pattern representation, and it has also been
claimed to have a privileged status in the brain response to
complex stimuli, as faces when viewed as a whole [21,22]. A
natural emerging question is whether symmetry has the same
status in pattern-recognition systems based on machine-learning
paradigms. It has been shown that the use of latent symmetries in
pattern-recognition problems like face detection is beneficial [21],
and that parsing techniques also perform efficiently [23,24]. This
study explores the consequences of using the natural symmetry of
the brain for pattern recognition of AD, and how this symmetry is
connected with the disease itself.

2. Materials and methods

The tool for conducting the analysis is based on principal-
component analysis (PCA) on an enhanced set of images. This
procedure identifies the main deviations from the mean, and
attempts to separate them into a set of linear independent images.
This new set can be separated into symmetric and asymmetric
images, as described in Section 2.1.

2.1. Enhanced dataset: parity study

The three-dimensional volume of a brain image is represented
by a scalar function t(x) of position x = (x, y, z) (in the following, an
image), with the image centered on the dividing plane of both hemi-
spheres x = 0. We consider the possibility of extending the database
to an ensemble of images:

tn(x, y, z) ∪ tn(−x, y, z) (1)

with n = 1, 2, . . ., N, where N is the number of images. The sym-
metrized and averaged brain image of the dataset is defined as:

t(x, y, z) = 1
2N

N∑

n=1

(tn(x, y, z) + tn(−x, y, z)) (2)

Following the approach in [17], each brain image is represented by
its eigenbrain expansion. Firstly, PCA requires that the average of
the image set is subtracted from each brain image, producing a new
set t̂n = tn − t. Here, an image t̂ is even (in the mid-plane) if:

t̂n(x, y, z) = t̂n(−x, y, z) (3)

and odd if

t̂n(x, y, z) = −t̂n(−x, y, z) (4)

In practice, the function t̂n takes only discrete values at voxels.
The intensity values of t̂n(x, y, z) are concatenated to form the
M-dimensional column vector tn, and the mirrored counterpart
t̂n(−x, y, z) forms the column vector tn, where M is the total number

of voxels in the image.1 On the set {tn ∪ tn}, a PCA transformation
is composed of M-dimensional orthogonal vectors ui, such that

�i = 1
2N

N∑

n=1

(uT
i (tn + tn))2 (5)

is maximum, subject to the constraint:

uT
i uj = ıij (6)

where ıij is the Kronecker delta. The resulting ui and �i are
the eigenvectors and eigenvalues respectively of the covariance
matrix:

C = 1
2N

N∑

n=1

[tntT
n + tnt

T
n] (7)

The orthogonal eigenvector basis
{

ui

}
, i = 1, . . . , 2N forms the so-

called eigenbrains. Within this framework, the coefficients in the
eigenbrain expansion are uncorrelated, and each eigenvalue repre-
sents the statistical variance of the corresponding coefficient in the
expansion. As is directly verified, we can rewrite C as the sum of an
even part Cs and an odd one Ca:

Cs = 1
4N

N∑

n=1

[tn + tn][tn + tn]T (8)

Ca = 1
4N

N∑

n=1

[tn − tn][tn − tn]T (9)

that which are orthogonal and have eigenvectors that are even and
odd, respectively. In other words, the eigenspace of C, E(C) can be
expressed as the direct sum of E(Cs) and E(Ca) (see [25]), that is:

E(C) = E(Cs) ⊕ E(Ca) (10)

If we define the symmetric image ts
n as:

ts
n = tn + tn (11)

and the asymmetric image ta
n as:

ta
n = tn − tn (12)

it follows that we should consider the following two decoupled
problems:

Csus
i = �iu

s
i (13)

Caua
j = �ju

a
j (14)

where:

Cs = 1
4N

N∑

n=1

ts
n(ts

n)T (15)

Ca = 1
4N

N∑

n=1

ta
n(ta

n)T (16)

These two problems can be viewed as equivalent to starting out
with two separated ensembles ts

n and ta
n, n = 1, 2, . . ., N consisting of

even and odd images, and then proceed with the two cases inde-
pendently. To solve them, it is necessary to diagonalize two M × M
covariance matrices, which for brain images would be approxi-
mately a 5 · 105 × 5 ·105 matrix. There are alternatives to deal with
these problems, for instance based on the diagonalization of the

1 It is to be understood that the vectors tn and tn are centered as t̂n , but explicit
reference has been removed in order to simplify the notation.
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