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a  b  s  t  r  a  c  t

Objective:  Despite  the  rise  of  high-throughput  technologies,  clinical  data  such  as  age, gender  and  medical
history  guide  clinical  management  for most  diseases  and  examinations.  To  improve  clinical  management,
available  patient  information  should  be  fully  exploited.  This  requires  appropriate  modeling  of  relevant
parameters.
Methods:  When  kernel  methods  are  used,  traditional  kernel  functions  such  as  the  linear  kernel  are
often  applied  to  the set of clinical  parameters.  These  kernel  functions,  however,  have  their  disadvan-
tages  due  to the specific  characteristics  of  clinical  data,  being  a mix  of variable  types  with  each  variable
its own  range.  We  propose  a new  kernel  function  specifically  adapted  to  the  characteristics  of  clinical
data.
Results:  The  clinical  kernel  function  provides  a better  representation  of  patients’  similarity  by equalizing
the  influence  of  all variables  and  taking  into  account  the  range  r of  the  variables.  Moreover,  it is  robust
with  respect  to changes  in r.  Incorporated  in a least  squares  support  vector  machine,  the new  kernel
function  results  in  significantly  improved  diagnosis,  prognosis  and  prediction  of  therapy  response.  This
is illustrated  on four  clinical  data  sets  within  gynecology,  with  an  average  increase  in test  area  under
the  ROC  curve  (AUC)  of 0.023,  0.021,  0.122  and  0.019,  respectively.  Moreover,  when  combining  clinical
parameters  and expression  data  in  three  case  studies  on  breast  cancer,  results  improved  overall  with
use of the new  kernel  function  and  when  considering  both  data  types  in  a weighted  fashion,  with  a
larger  weight  assigned  to the  clinical  parameters.  The  increase  in AUC with  respect  to a  standard  kernel
function  and/or  unweighted  data  combination  was  maximum  0.127,  0.042  and  0.118  for  the  three  case
studies.
Conclusion:  For  clinical  data  consisting  of  variables  of different  types,  the  proposed  kernel  function  –
which  takes  into  account  the  type  and  range  of each  variable  – has  shown  to  be  a better  alternative  for
linear  and  non-linear  classification  problems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

During an examination, patient-specific information such
as age, menopausal status and medical history is registered.
Histopathological parameters such as tumor size, lymph node sta-
tus and relapse rate, and ultrasound data such as endometrium
thickness are often registered as well, with the set of clinical
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parameters characterizing a patient depending on the investigated
disease. Such parameters or combinations thereof have been evalu-
ated as prognostic indicators (for example [1,2]). Because clinicians
prefer interpretable decision support systems, clinical manage-
ment for diagnosis and prognosis and decisions concerning therapy
response are for most of the diseases and examinations fully based
on clinical and pathological indicators.

Besides clinical data, high-throughput technology – and espe-
cially microarray technology – has considerably advanced basic
biological science and the entire field of cancer taxonomy,
biomarker development and identification of prognostic and
predictive markers [3–5]. In numerous studies, multiple high-
throughput data sources were collected and simultaneously
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studied while omitting clinical parameters. High-throughput data,
however, are in general much more difficult and expensive to col-
lect while clinical parameters are routinely measured by clinicians.
The latter have been used by clinicians for decades and should be
included in the investigation, moreover because a critical study on
the prediction of breast cancer outcome has suggested that clinical
markers and profiles obtained from high-throughput technologies
have similar power for prognosis [6].

Advanced mathematical models can aid clinical decision sup-
port. In many previous studies [7–10], the support vector machine
(SVM) [11] was used for this purpose. Several disadvantages, how-
ever, occur when applying the SVM directly to clinical data, due
to the heterogeneous nature of clinical data compared to high-
throughput data sources. The influence of each variable on patients’
similarity will be proportional to its range, thereby enlarging the
influence of irrelevant continuous variables and diminishing the
contribution of important discrete variables. As it has been shown
that better results can be obtained by adapting the kernel func-
tion to the structure of the data and defining a kernel function
per domain [12], a distinction is made between continuous vari-
ables, ordinal variables with an intrinsic ordering but often lacking
equal distance between two consecutive categories, and nominal
variables without any ordering.

The scale of the input data was already known to influence
model performance. A rough distinction according to variable type
was incorporated in LS-SVMlab, a Matlab/C toolbox containing a
variety of techniques and algorithms for the least squares support
vector machine (LS-SVM) with applications in classification and
non-linear regression [13]. Binary variables were re-scaled to {−1,
1} while continuous variables were normalized, avoiding attributes
in larger numeric ranges to dominate those in smaller ranges. Other
variables, however, were kept unchanged, thereby not distinguish-
ing ordinal from nominal variables.

We  will propose an alternative kernel function specifically
developed for clinical data, which does not suffer from the
ambiguity of data preprocessing by equally taking into account
all variables. First, we will show the improvement obtained
with this alternative kernel function when applied to four clin-
ical data sets within gynecology. Secondly, the advantage of
this kernel function will be illustrated for the combination of
clinical and microarray data in three case studies on breast
cancer.

2. Methods

2.1. Kernel methods and least squares support vector machine

Kernel methods are a powerful class of algorithms for pattern
analysis. They work in a high dimensional feature space to which
data x is mapped from the original input space with the function
˚(x) [14,15]. The kernel function k(xi, xj) efficiently computes the
inner product 〈˚(xi), ˚(xj)〉 between all pairs of data items xi and
xj in the feature space, resulting in the N × N kernel matrix K with
N the number of data items. Any symmetric, positive semi-definite
function is a valid kernel function, resulting in many possible ker-
nels. However, no formal proof of optimality exists for the use of
one kernel function above an other. The functions that are most fre-
quently employed in classification problems are the linear kernel

xiT xj , the polynomial kernel (xiT xj + �)
d

with – as kernel parameters
– the intercept constant � ∈ R

+ and degree d ∈ N, and the radial basis
function exp(−||xi − xj||22/�2) with � ∈ R

+ representing the width of
a Gaussian distribution centered on the data points. The polynomial
kernel corresponds to a feature space spanned by all products of d
variables at the most. This kernel results in a quadratic separat-
ing surface in the input space for d = 2, and it represents the cubic

kernel for d = 3. More complex kernel functions have been proposed
as well, such as graph and wavelet kernels [16,17]. In this paper, the
linear kernel function is compared with a newly introduced kernel
function for clinical data, referred to as the clinical kernel function
(see Section 2.3).

A kernel algorithm for supervised classification is the LS-SVM, a
simplified version of the SVM [11] and developed by Suykens et al.

[18,19]. Given is a training set for classification {xi, yi}
N
i=1 of N sam-

ples with feature vectors xj ∈ R
p and binary output labels yi ∈ {− 1,

+ 1}. The aim of supervised classification is to train a function
f(x) = y that correctly classifies unseen samples {x, y}. Data points
xi with f(xi) ≥ 0 are assigned the label +1, data points with f(xi) < 0
the label −1. A non-linear function of the form f (x) = wT ˚(x) + b,
with w representing the normal vector on the decision hyperplane
wT ˚(x) + b = 0 and variable b the bias term, can be obtained with
the following constrained optimization problem for the LS-SVM:

min
w,b,e

(
1
2

wT w + �
1
2

N∑
i=1

�ie
2
i

)
subject to yi[w

T ˚(xi) + b]

= 1 − ei i = 1 . . . N with �i =

⎧⎨
⎩

N

2NP
if yi = +1

N

2NN
if yi = −1

,

and NP and NN representing the number of positive and negative
samples, respectively.

The regularization parameter � represents the trade-off
between maximization of the distance between samples of the
two considered classes (that is, 2/||w||2) and minimization of the
squared error contribution. Regularization by keeping � small
allows tackling the problem of overfitting by enforcing low
complexity and good generalizability while tolerating misclassi-
fications in case of overlapping distributions. Because in many
two-class problems data sets are skewed in favor of one class
with NP � NN or NN � NP, we  used an adapted version of the
LS-SVM in which a different factor �i is assigned to positive
and negative samples [20]. In this way, the contribution of false
negative and false positive errors to the objective function is
balanced.

In dual space, the equivalent problem of this optimization prob-
lem is a system of linear equations in function of the number of
samples [18,19]. All experiments and calculations in this study
were therefore performed in dual space, using Matlab 7.0.0 for
Windows.

2.2. Kernel-based integration of multiple data sets

The representation of any data set with a real-valued kernel
matrix, independent of the nature or complexity of the data to be
analyzed, makes kernel methods ideally positioned for heteroge-
neous data integration. In [21], Daemen and colleagues investigated
whether clinical and microarray data can be efficiently combined.
In most microarray studies on cancer, the focus is on the microarray
analysis while clinical data are not modeled in the same manner.
When integrating both heterogeneous data sources, advantage can
be taken from the strength of both data sources. This approach
has been improved and extended towards the inclusion of multiple
high-throughput data sources [22]. Three ways to simultaneously
learn from multiple data sources were discussed, differing in the
stage of the model building process at which integration occurs and
referred to as early, intermediate and late integration [21]. With
early integration, the microarray and clinical data sets would be
concatenated before model building. Due to the huge amount of
genes, clinical variables would need to be very significant before
being selected. The late integration approach in which the two
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