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1. Introduction

The importance of text mining techniques is unquestionable
given the exponentially growing number of biomedical papers.
Many efforts have been made to cope with the flood of textual
information in this domain, but most have focused on abstracts,
such as MEDLINE. As more full-text biomedical papers are
becoming available in digitized form online, there is a need for
tools to mine information from all parts of a paper, including
figures, figure legends, and tables.

Biomedical papers often contain many figures. Futrelle et al. [1]
counted the number of words contained in figure legends/captions
and in sentences in the main text and found that 50% of the content
of typical biological papers was figure related. Notably, because
figures and their legends/captions, collectively called ‘‘legends’’
hereafter, in biomedical papers provide important information
about research outcomes, mining techniques targeting them have
attracted a great deal of attention. Liu et al. [2] developed a figure
legend indexing and classification system, FigSearch. They defined
schematic representations of protein interactions and signaling
events in biomedical literature as a figure type of interest, took a
supervised machine learning approach to classify figures, and
performed indexing of figures using figure legends. However, they
did not use the main text referring to the figures. Shatkay et al. [3]
used graphical features of images combined with the text of
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A B S T R A C T

Objective: As more full-text biomedical papers are becoming available in digitized form online, there is a

need for tools to mine information from all parts of such papers. Because the figures and legends/

captions in biomedical papers provide important information about research outcomes, mining

techniques targeting them have attracted a great deal of attention. In this study, we focused on pathway

figures that illustrate signaling or metabolic pathways, because many of these are important in

understanding disease mechanism(s). We developed a figure classification system based on textual

information contained in biomedical papers to provide an automated acquisition system for such

pathway figures.

Materials and methods: We used full-text journal articles available on PubMed Central as our data set.

We used several supervised machine learning methods, such as decision tree and a support vector

machine, to classify figures in the data set. We compared the classification performance among the cases

using only figure legends, using only sentences referring to the figure in the main text of the article, and

combining figure legends with sentences referring to the figure in the main text of the article.

Results: Compared with previous related work, a sufficiently high performance was achieved with the

figure legends alone. The performance with the sentences referring to the figure in the main text was

actually lower than that with the figure legends alone, indicating that focusing on the main text alone is

inadequate. The combination of legend and main text clearly had an effect, but including the prior and

following sentences in addition to the sentence referring to the figure dramatically improved the

performance.

Conclusions: We developed an automatic pathway figure classification system based on both figure

legends and the main text that has quite a high degree of accuracy. To our knowledge, this is the first

attempt to address a figure classification task using legends and the main text, and it may provide a first

stage for achieving efficient figure mining.
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PubMed abstracts for biomedical document categorization to
determine which documents were relevant to a given annotation
task performed by Mouse Genome Database curators. However,
their aim was not to analyze individual figures but to characterize
each document based on the figures included. In other words, they
were not interested in what each figure represented. Accordingly,
they used neither figure legends nor textual information in the
figures for their document classification. Murphy and co-workers
[4–6] dealt with fluorescence microscopy images, which contain
information about the distribution of proteins and other biological
macromolecules inside cells. They set as a goal the building of a
knowledge base system that could interpret such images in online
journals. They used graphical features of images to find and
interpret figures of interest from journals and textual information
in legends to separate multiple images contained in one figure, but
the main text was not used.

Here, the focus was on pathway figures among the variety of
figures contained in biomedical papers, because multiple proteins
in a specific pathway are often related to the causes of multi-
factorial disorders, and it is important to obtain information about
pathways to understand the mechanism(s) of such disorders. For
example, PSEN1, SNCA, and APOE are all genes involved in
Alzheimer’s disease, and they are in the same pathway with APP
(amyloid beta A4 precursor protein), which has been reported to
accumulate in the brain of Alzheimer’s patients [7]. When there is a
new experimentally determined candidate gene, one may predict
that a gene is related to the same mechanism of a certain disease if
it is in the same pathway as a known one. Otherwise, one may
predict another mechanism of the disease by considering the
function of that gene in another pathway. Indeed, pathway
information is important in understanding diseases. The need
for systems to retrieve pathway information is high, but
construction of manually curated pathway databases (e.g., KEGG
[8]) is generally laborious and time consuming. Furthermore,
according to our investigation, not all information in typical
pathway figures is always contained in either the legends or the
main text; many pathway figures contain more gene/protein
names than the legend or the main text. A complementary
relationship among the figure, the legend, and the main text is
especially strong in such pathway figures, so it is necessary to mine
information efficiently from all of them to understand pathways.

As a first stage toward such an efficient pathway figure mining
process, we focused on figure classification to automatically select
pathway figures that met our definition (i.e., directed graphs
composed of more than two steps that represent signaling or
metabolic pathways). Unlike the document classification task
mentioned above [3], the classification of individual figures
requires a more sophisticated method, in that one needs to
consider the specific text regarding each figure rather than the
document as whole. Furthermore, a document generally contains
both desired and undesired figures. Thus, it is quite difficult to
efficiently extract information about figures of interest. Moreover,
the graphical features employed by Shatkay et al. [3] or Murphy
and co-workers [4–6] could not be readily applied to our task
because describing our pathway definition in graphical features is
difficult with the current state of image processing techniques.
Rafkind et al. [9] used graphical features for figure classification,
but their classification was rather broad, and they did not define a
detailed category such as pathways. Thus, we used textual
information in figure legends and in the main text referring to
the figures to automatically choose pathway figures. As described
in the next section, we took a machine learning approach to classify
figures.

Our ultimate goal is to develop a figure finding system, which
we call FigFinder, to retrieve figures relevant to a user’s query
(gene/protein or chemical compound names) by mining informa-

tion contained in figures, their legends, and the main text in an
integrated manner. The classification system introduced here may
be the first stage in developing such a system.

2. Materials and methods

2.1. Full-text articles

We chose five journals available on PubMed Central [10]:
Biochemical Journal (2004–2005), BMC Developmental Biology
(2001–2005), BMC Molecular Biology (2000–2005), PLoS Biology
(2003 to June 2005), and Proceedings of the National Academy of
Sciences of the United States of America (November 1996–2001,
2003, 23 November 2004 to 15 February 2005). The total number
of articles was 16,471, in which there were 75,350 figures in JPEG
format and related legends. We converted each HTML full-text
paper to XML format using an internally developed XML converter.

2.2. Positive and negative data

According to our pathway definition described in the previous
section, we manually checked the 75,350 figures and identified 375
pathway figures to be positive data. Another 11,251 figures other
than pathway figures were randomly selected as negative data.
This is because too small a proportion of positive data takes a long
time to learn and often leads to improper learning. Figure samples
that were included in positive data are shown in Fig. 1. Fig. 1(a)
represents a model for the role of Akt in IL-2 signaling in a normal
cell. However, mutations in some genes in this pathway induce
certain diseases. For example, a mutation in Jak1 causes acute
leukemia, or lymphoma; mutations in c-myc, bcl-2, and Akt trigger
various cancers. Fig. 1(b) is the interaction of EGF with EGFR and
the downstream events of NF-kB activation in breast cancer cells.
Fig. 1(c) shows target genes of b-catenin-T-cell factor/lymphoid-
enhancer factor complex and the related cellular processes in
human colorectal carcinomas. As can be seen in these figures,
many signaling pathways are related to diseases, even if they are
not necessarily stated to be disease related. In contrast, Fig. 2
shows samples that appeared similar to pathway figures but were
considered to be negative because they did not meet our pathway
definition. Fig. 2(a) is composed of fewer than two steps. Fig. 2(b)
represents not pathways but interactions and complexes. Fig. 2(c)
is not a directed graph. Negative data also contained diagrams,
fluorescence microscopy images, and gel photographs. For each
figure in both the positive and negative data, we obtained the
legend from the XML-formatted full-text paper. For all the data we
used, the list of article IDs in PubMed Central along with
information about which figures we used is available at http://
marine.cb.k.u-tokyo.ac.jp/�natsui/.

2.3. Feature word selection

We selected feature words to represent figures in our data set
from among words contained in all positive and negative legends.
Stopwords were first removed from figure legends using a
stopword list provided by NCBI [11]. It included 132 words that
appear so frequently that they are ignored in the indexing of
PubMed abstracts. Next we stemmed the remaining words using
the Porter Stemmer algorithm [12]. This algorithm removes
suffixes from words and leaves the stem (e.g., pathway or pathways

becomes pathwai). Then we counted the frequency of each word in
the data set and excluded 4% of the low-frequency words because
they are also considered to be of no value in indexing [13]. Words
that were composed of fewer than three letters were also excluded
to remove abbreviated words with multiple meanings (homo-
nyms). Then we calculated chi-square statistics (CHI) and
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