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1. Introduction

Medical errors are a significant problem in the United States.
They kill more Americans each year than motor vehicle accidents,
breast cancer, and AIDS combined [1]. In laboratory medicine, of
particular concern are patient identification errors. Proper patient
identification is essential to reducing errors and improving
patient safety. The Joint Commission on Accreditation of
Healthcare Organizations (JCAHO) recognizes this and has
included ‘‘Improve the accuracy of patient identification’’ as
one of its ‘‘National Patient Safety Goals’’ [2]. Patient identification
and other laboratory errors have received increased attention in
the research literature both inside [3] and outside [4,5] the United
States. In this paper we propose a method that can be used to
screen for an error that is particularly difficult to identify in the
laboratory, the mislabeled specimen or ‘‘wrong blood in tube’’

error. This type of error refers to a specimen of blood collected on
Patient A, but for which the accompanying requisition and label is
for Patient B [3].

A wrong blood in tube error is more pernicious than many other
blood laboratory errors. If a patient’s results are like most others in
the lab, then a mismatched sample will often yield a result that is
similar to that of the patient’s true result. Further, for any set of
values for which a proportion of specimens are switched statistical
characteristics (e.g., mean and standard deviation) will be the same
as if they were not switched. In sum, to identify such mismatched
specimens, more sophisticated methods are needed than simple
comparisons of values to a norm. In this paper, we develop, train
and test a network for detecting wrong blood in tube errors when
glucose and HbA1c analytes are analyzed in separate vials. We
report on two experiments. Experiment 1 evaluates the network
against an established method for automatic detection of errors,
LabRespond [5], using the National Health and Nutrition Exami-
nation Survey (NHANES) data set. Experiment 2 compares the
performance of a Bayesian network to expert lab reviewers when
values are derived from a pre-diabetic population.
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A B S T R A C T

Objective: In an effort to address the problem of laboratory errors, we develop and evaluate a method to

detect mismatched specimens from nationally collected blood laboratory data in two experiments.

Methods: In Experiments 1 and 2 using blood labs from National Health and Nutrition Examination

Survey (NHANES) and values derived from the Diabetes Prevention Program (DPP) respectively, a

proportion of glucose and HbA1c specimens were randomly mismatched. A Bayesian network that

encoded probabilistic relationships among analytes was used to predict mismatches. In Experiment 1

the performance of the network was compared against existing error detection software. In Experiment

2 the network was compared against 11 human experts recruited from the American Academy of Clinical

Chemists. Results were compared via area under the receiver-operator characteristic curves (AUCs) and

with agreement statistics.

Results: In Experiment 1 the network was most predictive of mismatches that produced clinically

significant discrepancies between true and mismatched scores ((AUC of 0.87 (�0.04) for HbA1c and 0.83

(�0.02) for glucose), performed well in identifying errors among those self-reporting diabetes (N = 329)

(AUC = 0.79 (�0.02)) and performed significantly better than the established approach it was tested against

(in all cases p < .0.05). In Experiment 2 it performed better (and in no case worse) than 7 of the 11 human

experts. Average percent agreement was 0.79 and Kappa (k) was 0.59, between experts and the Bayesian

network.

Conclusions: Bayesian network can accurately identify mismatched specimens. The algorithm is best at

identifying mismatches that result in a clinically significant magnitude of error.
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1.1. Bayesian networks

We approach the problem of detecting wrong blood in tube
errors by implementing a Bayesian network [6]. A Bayesian
network is a graphical representation of a joint probability
distribution over a set of random variables. A Bayesian network
B = hG, Pi consists of a representing graph, G, and an associated joint
probability distribution, P. The graph, G, in the network is
described by a finite set of nodes V and a binary relation, R on
V. A binary relation on a set of nodes V is a subset of ordered pairs
ðvi; v jÞ in V � V. The relation R characterizes edges in the graph,
where R = {ðvi; v jÞ 2 V � V: vi is a parent of v j}. Let viRv j denote vi is a
parent of v j. The relation R is irreflexive (for every vi 2 V, not viRvi)
and acyclic (for any finite sequence of distinct elements
v1; v2; . . . ; vk 2 V such that k > 1 and v jRv jþ1 for all j 2 {1, 2, . . .,
k � 1}, not vkRv1). An irreflexive graph is called a directed graph, its
edges are directed edges, and thus, graphs in Bayesian networks
are referred to as directed and acyclic graphs (DAGs). The DAG, G, in
the Bayesian network, B = hG, Pi, represents the probability
distribution, P, where nodes in V characterize random variables
and directed edges describe stochastic dependence. If vi is a
variable in the graph then the graph specifies conditional
probability distributions PðvijpðviÞÞ, where pðviÞ are parents of
vi. While each variable vi is dependent on its parents, it is also
conditionally independent of any of its non-descendants given its
parents. Hence, given a directed acyclic graph G with a set of nodes
V ¼ fv1; . . . ; vng the joint probability distribution of the network
may be factored as follows:

Pðv1; . . . ; vnÞ ¼
Y

PðvijpðviÞÞ (1)

1.2. Bayesian networks and blood laboratory errors

Bayesian networks provide a graphical means for representing
uncertain relationships between and among variables and allow us
to model what might influence belief in why a particular analytic
value is observed. In the case of Bayesian networks for detecting
blood laboratory errors, we must consider both continuous
variables (e.g., analyte values) and discrete variables (e.g., wrong
blood in tube: true or false). To guarantee exact computation, we
impose on the DAG the condition that discrete variables are not
allowed to have continuous parents [7].

From a network, we may infer a probability that there is wrong
blood in the tube given empirical information about observed
analyte values and the structure of the network. To understand our
approach, consider the following model:

The graph in Fig. 1 encodes knowledge about what influences
our belief in analyte values, mismatch and diabetes status. For
example, we know of three factors which would influence belief in
an (unobserved) HbA1c score:

(1) Observed glucose score (directed edge ‘‘a’’), because HbA1c is
formed in the patient via a non-enzymatic pathway by
hemoglobin’s normal exposure to glucose,

(2) knowledge of a mismatch (directed edge ‘‘b’’), because this, too,
may cause one to observe a particular HbA1c score, and

(3) diagnosis of diabetes (directed edge ‘‘c’’), because HbA1c scores
are in general higher for these patients.

Also, disease status (diabetes = (‘yes’ or ‘no’)) affects our belief
in an (unobserved) glucose score (directed edge ‘‘d’’). In practice,
given both a purported glucose and HbA1c score on a patient, we
cannot uniquely identify whether a mismatch was due to a glucose
vial switch or an HbA1c vial switch, only that a mismatch in at least
one of the two vials may have occurred. Therefore, we draw an
arrow from ‘‘mismatch’’ to ‘‘glucose’’ as well (directed edge ‘‘e’’).

Notice in Fig. 1, that absence of arrows communicates
important information. For example, our model presented above
does not have an arrow from ‘‘diabetes’’ to ‘‘mismatch’’. This is
because these events are probabilistically independent. A lab
technician handling vials is not more prone to mismatch a diabetic
patient’s vial as s/he is to mishandle a non-diabetic patient’s vial
and there is no clear way to justify such an arrow. Therefore, the
model we use imposes that one’s disease status does not influence
belief in a mismatch, but does influence belief in observed fasting
glucose and HbA1c score. We note also that to implement the
model does not require that diabetes status be known. Belief in
diabetes status, however, will be influenced by glucose and HbA1c
score. This is an important point, because in a clinical laboratory
patient diagnosis is often unknown. The graph in Fig. 1 then
constrains the relationships among conditional probabilities
among the variables and this network is the basis for our analysis
of NHANES data because it incorporates many of the basic facts
about glucose and HbA1c analytic results and variables that may
influence glucose and HbA1c score.

2. Experiments

2.1. Experiment 1

2.1.1. Overview

This experiment compares the performance of the network
against a validated benchmark method of error detection,
LabRespond.

2.1.2. Methods

2.1.2.1. Data source. The current study utilized data from the
National Health and Nutrition Examination Survey (NHANES). The
National Health and Nutrition Examination Survey is an on-going
survey and examination of the civilian, non-institutionalized U.S.
population. The study is characterized by a complex stratified
multistage probability survey design [8]. Mobile examination
centers are used for a majority of the health examinations and
specimen collections for subsequent analysis at a clinical
laboratory. Data from the 2003 to 2004 survey years were utilized
in this analysis with glucose from the biochemistry profile,
included 6492 results, and glycohemoglobin from the glycohe-
moglobin profile, included 6601 results. We excluded patients
with missing glucose or glycohemoglobin results, leaving a total
6486 patients. Each patient’s self-reported diabetic status was
incorporated from the medical conditions questionnaire.

2.1.2.2. Specimen collection. In order to measure glycohemoglobin,
a whole blood sample was collected from the patient by the mobile
examination center staff, which then shipped the sample to the
University of Missouri-Columbia for analysis using a Primus
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Fig. 1. Bayesian network.
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