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1. Introduction

Protein synthesis is a key process for living organisms. All
proteins are encoded by messenger RNA (mRNA), which is
extracted from a gene in DNA; proteins are produced in a process
that involves two stages, namely transcription and translation. In
transcription, a sequence of the gene is used to produce mRNA,
which is then used to create a protein during translation. For a gene
to be transcribed into mRNA, it is often necessary for a specific
protein called transcription factor to bind to the DNA in a specific
location. A transcription factor can have a positive or negative
regulatory effect on the binding site. So, the transcription level (or

the expression level) of the gene can change based on the binding
of the transcription factor. Since the transcription factor is also a
protein, which is decoded from a gene, it is possible to describe and
discuss a set of interactions among genes; these interactions
constitute a GRN.

As described in the literature, there are various methods to
represent and model a GRN [1]. These include (dynamic) Bayesian
networks, (probabilistic) Boolean networks (BNs), neural net-
works, petri-net models and differential equation-based models.
Modeling may provide an opportunity to estimate the future state
of a cell based on the current state and the conditions affecting the
cell. To justify the need for control, consider a cell which is
estimated to be in an undesirable state (e.g., cancerous state) in the
near future; this brings the necessity to intervene the current state
of the network in order to avoid reaching undesirable state(s). But,
it is important to intervene as efficiently and effectively as possible
because of the urgency of the situation and the cost of the
intervention. This motivates for the need to control GRNs, the
problem may be stated as follows: find an efficient policy to interact
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A B S T R A C T

Objective: Interactions between genes are realized as gene regulatory networks (GRNs). The control of

such networks is essential for investigating issues like different diseases. Control is the process of

studying the states and behavior of a given system under different conditions. The system considered in

this study is a gene regulatory network (GRN), and one of the most important aspects in the control of

GRNs is scalability. Consequently, the objective of this study is to develop a scalable technique that

facilitates the control of GRNs.

Method: As the approach described in this paper concentrates on the control of GRNs, we argue that it

is possible to improve scalability by reducing the number of genes to be considered by the control policy.

Consequently, we propose a novel method that considers gene relevancy to estimate genes that are less

important for control. This way, it is possible to get a reduced model after identifying genes that can be

ignored in model-building. The latter genes are located based on a threshold value which is expected to

be provided by a domain expert. Some guidelines are listed to help the domain expert in setting

appropriate threshold value.

Results: We run experiments using both synthetic and real data, including metastatic melanoma and

budding yeast (Saccharomyces cerevisiae). The reported test results identified genes that could be

eliminated from each of the investigated GRNs. For instance, test results on budding yeast identified the

two genes SWI5 and MCM1 as candidates to be eliminated. This considerably reduces the computation

cost and hence demonstrate the applicability and effectiveness of the proposed approach.

Conclusion: Employing the proposed reduction strategy results in close to optimal solutions to the

control of GRNs, which are otherwise intractable due to the huge state space implied by the large number

of genes.
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(by interventions) with the network in order to change the behavior in

a way that satisfies some prespecified objective(s). On the other hand,
the size of the state space is the most crucial issue in GRN control;
this consideration is common to all control problems. Here it is also
worth mentioning that the term control in the context of GRN is
slightly different from control theory because of the limitedness of
possible intervention means for GRNs.

For a discrete GRN (where the expression levels of genes are
discretized), the size of the state space is proportional to the
number of genes and the number of levels of discretization for each
gene. Even if the expression levels of the genes are discretized to
binary levels, the size of the state space is 2N for an N-gene
network; this makes the problem hard to cope with even for small
values of N. So, to find an efficient policy for the GRN control
problem, appropriate methods must be introduced to reduce the
state space to a reasonable size, whenever possible and desired.

The relevancy of a given gene in terms of control depends on the
objective to be satisfied because genes in a GRN have varying
effects on each other; this means that a gene might have minimal
or negligible effect on the solution of a GRN control problem. In this
paper, we utilize the relevancy measure to propose a kind of
feature reduction method capable of identifying genes which are
less relevant for control. Such genes are candidates to be
eliminated in building a model so that an approximate control
policy can be reached faster. The feature reduction process may
identify more than one gene as candidates to be eliminated. But,
even when one gene is eliminated, the state space reduces
significantly. Obviously, this positively reflects on the scalability of
the GRN control problem to be investigated.

Generally, the control of GRNs has been studied on Markovian
models, e.g., [2–10]. For instance, Shmulevich et al. [10] considered
control in a Markovian model by exploiting the Markov chain
theory [11]. It has been shown how to select the gene to intervene
in order to minimize the time required to reach some set of
desirable states, given the current state. Structural intervention is
also considered for reaching desired states [9]. On the other hand,
Datta et al. [5] formulated the interventions in terms of altering
transition probabilities by using some external control variables.
They used dynamic programming to formulate and solve a finite
horizon controlled Markov chain, where a horizon is the duration
of applying external actions and the Markov chain is defined
similar to a Markov decision process [12]. Optimal infinite-horizon
control extension of this work is described in [8].

Almost all the above mentioned studies use probabilistic
Boolean networks (PBNs) [13] as the Markovian model. A
slightly different model in the context of control is investigated
in [7], where the switching between the BNs forming a
probabilistic Boolean network (PBN) is not performed in every
step, but probabilistically. Attractors in a PBN are the states to be
reached after a finite number of steps and this stable situation
will not change in the absence of perturbations. Control with the
lack of the knowledge of switching probabilities between BNs
that have common attractors has been studied by Choudhary
et al. [4].

A previous study in our group [2,3] is based on the following
argument: if the control process is considered as a treatment then

observing the patient after the treatment can also be taken into

account while solving the control problem. As a result, the solution
described in [2] was developed; it considers a monitoring horizon
after the control horizon. The solution is given for various settings
depending on the control and monitoring horizons being finite or
infinite. The problem was also formulated as a multi-objective
problem where the objectives are state cost and state-action cost
defined by domain experts [3].

To sum up, the above mentioned works focus on solving the
control problem in GRNs for different settings using dynamic

programming. A gene is assumed to be relevant if it is chosen for
modeling, i.e., it exists in the same GRN with others. But, we
observed that the relevancy also depends on the objective(s); and
consequently we argue that the component of the GRN we should
focus on may change according to the given set of objectives. Based
on this argument, we propose a feature reduction method that
successfully maintains scalability in the control of GRNs [14,15]. By
feature reduction, we provide the choice to reduce the number of
genes to be considered in the control process and hence maintain
scalability. Neglecting scalability turns control into an unmanage-
able process, though control is essential to study and understand the
behavior of any given system. To the best of our knowledge, this is a
major contribution as the first attempt of applying feature reduction
in the context of GRNs; our initial results have encouraged us to
expand the work as described in this paper. The results reported in
this paper demonstrate the applicability and effectiveness of the
proposed approach. Although GRN control studies are not yet
directly applicable to clinical practice, the promising results
demonstrate the potential to be used in real applications. We
reported test results using both synthetic and real gene expression
data.

The rest of this paper is organized as follows. Section 2 includes
the necessary background information. Section 3 covers the details
of the proposed reduction based approach. Section 4 reports
experimental results on synthetic and real gene expression data.
Section 5 is conclusions and future research directions.

2. Background

In this section, we cover the background necessary for the scope
of the work described in this paper. In particular, we present an
overview of the Markov decision problems (MDPs) and discuss the
control problem in the context of GRNs.

2.1. Markov decision problems

A Markov decision process is formally defined as a quadruple
ðS;A; T;RÞ, where S is the set of states, A is the set of actions, T is
transition probabilities such that Tðs; a; s0Þ denotes the prob-
ability of the next state being s0 when action a is applied in state
s, and R is the real-valued reward function defined on the set
S� A. R is sometimes defined on the set S� A� S as Rðs; a; s0Þ,
where the next state also effects the reward function. This
definition can be easily transformed into the former as,
Rðs; aÞ ¼

P
s0Tðs; a; s0ÞRðs; a; s0Þ. A Markov decision process with a

performance criterion is called a Markov decision problem
(MDP). Solution to a MDP is a mapping p : S!A, which is called
policy. The aim here is to find a policy that maximizes the total
expected future reward, which is defined differently based on the
performance criterion. Unless otherwise stated, we focus in this
paper on total discounted infinite horizon future whose
definition can be specified as:

P
tb

t
Rtðs; aÞ, where Rtðs; aÞ is the

immediate reward on performing action a in state s at time step t,
and the discount factor b is in ð0;1Þ.

The value function for state s, denoted VðsÞ, gives the value of
desirability of state s for the current control process. Every policy p
defines a value function Vp on state space S. The value of a policy p
in state s is the total reward of choosing an action in state s

according to p, and following p thereafter. The Bellman equation
[16] defines the relationship between VpðsÞ and values of other
states:

VpðsÞ ¼ Rðs;pðsÞÞ þ b
X

s0
Tðs;pðsÞ; s0ÞVpðs0Þ (1)

There exists a unique optimal value function [12], denoted V�,
which is the value function of the optimal policy p�. The optimal
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