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Received 17 September 2015; received in revised form 10 October 2015; accepted 25 October 2015

KEYWORDS
Structured representation;
Sparsity;
Minicolumns;
Feed-forward inhibition

Abstract

Ever since the discovery of columnar structures, their function remained enigmatic. As a
potential explanation for this puzzling function, we introduce the ‘Columnar Machine’. We join
two neural network types, Structured Sparse Coding (SSC) of generative nature exploiting
sparse groups of neurons and Feed-Forward Networks (FFNs) into one architecture. Memories
supporting recognition can be quickly loaded into SSC via supervision or can be learned by
SSC in a self-organized manner. However, SSC evaluation is slow. We train FFNs for predicting
the sparse groups and then the representation is computed by fast undercomplete methods.
This two step procedure enables fast estimation of the overcomplete group sparse representa-
tions. The suggested architecture works fast and it is biologically plausible. Beyond the function
of the minicolumnar structure it may shed light onto the role of fast feed-forward inhibitory
thalamocortical channels and cortico-cortical feed-back connections. We demonstrate the
method for natural image sequences where we exploit temporal structure and for a cognitive
task where we explain the meaning of unknown words from their contexts.
� 2015 Elsevier B.V. All rights reserved.

Introduction

Columnar structure was discovered in the middle of the last
century (Mountcastle, 1957; Mountcastle, Berman, &
Davies, 1955), but the function of these structures is still
unclear. Horton and Adams ask if minicolumnar structure
has any function at all (Horton & Adams, 2005). Large scale,
map-like macrocolumnar organization seems less

problematic; they can be explained by wiring constraints
on representational coverage and continuity (Carreira-Perpi
ñán, Lister, & Goodhill, 2005). This is not the case for mini-
columns, even though.

� minicolumnar structure is supported by double bouquet
cells that are the prominent feature of the human
(and the monkey) cortex (Ramony Cajal, 1899), but are
barely present in other mammals raising the question if
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minicolumnar structure may be an evolutionary discovery
that boosted information processing and, possibly,
cognition.

� the size of the minicolumns have strong impacts on infor-
mation processing, behavior, and cognition, e.g., altered
horizontal spacing between minicolumns is typical in
autistic individuals and as well as in dyslexia (Casanova,
Buxhoeveden, Cohen, Switala, & Roy, 2002; Casanova,
Buxhoeveden, Switala, & Roy, 2002; Opris & Casanova,
2014).

There are other challenges concerning cortical informa-
tion processing, such as (i) why is the representation over-
complete, (ii) how can the feed-forward estimation be so
precise (Hung, Kreiman, Poggio, & DiCarlo, 2005) for such
an overcomplete system, and (iii) what is the role of
upstream processing?

Overcompleteness can be explained by sparsity based
savings in energy consumption (Friston, 2010). Fast feed-
forward estimation can be supported by principles exploited
in convolutional neural networks (Fukushima & Miyake,
1982; LeCun & Bengio, 1995; Serre, Oliva, & Poggio,
2007). However, convolutional networks restrict the flexi-
bility of downstream (feed-forward) processing and cannot
explain the presence of upstream (feed-back) processing
channels. This is disturbing, since upstream connections in
mammals are more abundant than downstream ones
(Markov et al., 2014). May these upstream channels have
special functions?

Another challenge is to explain the high diversity of inhi-
bitory neurons in the cortex. This is an intriguing feature,
since these neurons are much smaller in number than prin-
cipal cells, which – on the other hand – are highly similar to
each other. We are interested in the role of fast down-
stream inhibitory channels that overtake the excitatory
ones by speed (see, e.g., (Roux & Buzsáki, 2015) and the
references therein) and act like input-dependent thresholds
for those. We will also consider the potential role of double
bouquet cells, which seem to guide the minicolumnar orga-
nization and inhibit cells in other minicolumns (see, e.g.,
DeFelipe, 2011 and the references therein). Furthermore,
these cells seem to shape the neocortical structure in pri-
mates, but not in other mammalian species (Yáñez et al.,
2005).

Our contributions are as follows. Firstly, we put forth the
‘COLUMNAR MACHINE’ that exploits (i) structured sparse repre-
sentation and sparsifies groups of neurons instead of individ-
ual ones, (ii) feed-forward estimation for the active neuron
groups, i.e., those that will play a role in the representa-
tion, and (iii) iterative neural estimation of the pseudo-
inverse computation to form the continuous representation
of the inputs. This last step utilizes the upstream connec-
tions and we shall call these connections a ‘dictionary’
where each ‘word’ of the dictionary is the upstream set of
synapses of the neurons of the representation. We demon-
strate the working of the COLUMNAR MACHINE on different exam-
ples. The first example is a synthetic database that shows
the key features of the architecture. The second one is a
cognitive problem, where we shorten processing time for
the explanation of meanings of unknown words by means
of Wikipedia senses. Finally, we show the mechanism on a
temporal series of natural images, i.e., a spatio-temporal

example, where we include the learning of the dictionary
of the overcomplete sparse groups. It is worth noting that
the emphasis is on the columnar structure and not on the
particular form of feedforward estimation that shortens
computation time.

We will review prior work and sketch the architecture in
section ‘Prior work and motivations’. The algorithms are
detailed in the Method section. The experiments and results
are described in section ‘Experimental results’. We come
back to the above questions in the Discussion section. Con-
clusions are drawn in the last section.

Prior work and motivations

There are two pillars of the architecture, namely, (i) sparse
representation, especially its structured sparse version and
(ii) feed-forward estimations of the representation, feed-
forward networks, or FFNs, including support vector machi-
nes (SVMs), or multilayer perceptrons (MLPs) with recurrent
associative (non-temporal feed-back) connections. We
review sparse coding first.

The immediate forerunner of sparse representation
methods is the non-sparse and undercomplete forward-
inverse optics model of reciprocal connection (Kawato,
Hayakawa, & Inui, 1993), which was later put into dynamical
and hierarchical forms, see, e.g., (L}orincz, Szatmáry, &
Szirtes, 2002; Rao & Ballard, 1997) and the references
therein. Olshausen and Field Olshausen and Field (1996)
extended the architecture to overcomplete models con-
strained by sparsification costs. The surprising results of this
sparse coding scheme was that nonlinearities applied for
sparsification could vary in a broad range having minor or
no effects on the Gabor filter-like receptive fields formed
upon training with natural images. This suggested that such
algorithms can be very robust. The method was extended by
robust principal component analysis used for preprocessing;
it fit the found statistical properties of the receptive fields
in the primary visual cortex better (L}orincz, Palotai, &
Szirtes, 2012a). All of these algorithms estimate the (sparsi-
fied) pseudo-inverse of (a subset of) the dictionary that we
will detail later.

Findings of Olshausen and Field were clarified by the dis-
covery of ‘‘1-MAGIC’1: the theory shows (Candès, Romberg, &
Tao, 2006; Donoho & Elad, 2003) that under certain condi-
tions, ‘0 norm and ‘1 norm give the same results and that
the problems targeted by Olshausen and Field are close
for satisfying these conditions due to the heavy tailed distri-
butions hidden in natural images. Furthermore, the required
k-sparsity condition is closely matched for natural signals in
general.2 These features explain the robustness against the
type of non-linearities.

Sparse representations have been generalized to struc-
tured sparse networks in the machine learning literature.
They have both learning and representational advantages
(Bach, Jenatton, Mairal, & Obozinski, 2012). Group struc-
tures (Yuan & Lin, 2006) that employ a few dense groups
out of many other ones for representing a single input are
of particular interest, since they exhibit low complexity

1 http://statweb.stanford.edu/candes/l1magic/.
2 http://www.scholarpedia.org/article/1/f_noise.
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