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Abstract

Change detection, and which information to attend to, are key research problems relevant to
understanding adaptive behavior. Rational analyses of change detection have been developed
in optimal foraging theory (McNamara & Houston, 1987; Stephens, 1987) and psychology
(Gallistel, Krishan, Liu, Miller, & Latham, 2014). Information foraging models (Pirolli, 2007)
have been developed to predict the optimal choice of information, and when to terminate col-
lecting additional information. Optimal performance depend crucially on changing behavior
when the world changes. For example, intelligence analysts track the dynamically changing
strategies of adversaries and must choose information to weigh the utility of alternate actions
regarding these agents. Neurobiologically-plausible descriptions of these behaviors have thus
far been fragmentary (cf., Hayden, Pearson, & Platt, 2011). Here, behavioral and mechanistic
differences in belief updating about an agent’s strategy, and information foraging choices were
investigated in a variant of the patch foraging task. Human subjects typically displayed non-
normative updating and information foraging decisions which influenced future belief updating
and foraging behaviors. To explore the biological basis of these behaviors, a neural model which
forages, processes, and updates the beliefs of competing hypotheses was created. Strategy
updating and information foraging behaviors were modeled in the temporal and prefrontal cor-
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tices consistent with theories of human cognitive processing during adversarial game play. The
neural model reproduced human behaviors observed in foraging, belief updating, and change
detection. These results highlight the importance of updating strategy, foraging, and fatigue
behaviors and provide a simulation framework for future studies to investigate other high-level
cognitive behaviors.

ª 2014 Elsevier B.V. All rights reserved.

Introduction: Change detection with
information foraging

Change detection is a process critical to the survival of
many organisms and crucial to human performance in many
modern environments (e.g., investing in financial markets;
intelligence analysis). Rational models of change detection
have been developed in optimal foraging theory (e.g.,
McNamara & Houston, 1987; Stephens, 1987) for simplified,
hypothetical environments. These models suggest that to
survive in the natural world, animals need to actively
explore the environment and need to do so in a way that
maximizes the utility of their information foraging explora-
tions. Several algorithms have been proposed to account for
the reasoning processes involved in these behaviors. For
example, a rank-order based model of attentional saliency
was recently proposed to account for belief updating and
decision-making behaviors in a dynamically-changing envi-
ronment (Phillips et al., 2013b). Furthermore, anomaly
detection, a related problem to change detection, can be
addressed by several approaches including those that use
hippocampal dynamics (Srinivasa & Chelian, 2007) and retic-
ular inhibition (Phillips, Avery, Krichmar, & Bhattacharyya,
2013a). Another adaptation problem occurs in environments
in which resources are encountered in ‘‘patches,’’ and for-
aging within patches has diminishing returns (e.g., fruit-
bearing trees; herds of prey; information presented on a
web page). Optimal foraging theory developed the patch
foraging model (Charnov, 1976) to provide a rational analy-
sis of how much time should be invested in processing indi-
vidual patches, and this analysis has been extended to
human information foraging behavior (Pirolli, 2007). In this
paper, we present a neurocomputational model of an intel-
ligence analysis task that involves both a patch foraging
problem and a change detection problem. The task involves
interacting with visualizations representing events occur-
ring over time (a patch foraging problem) with the aim of
discerning whether the tactics of an adversary have changed
(a change detection problem).

Materials and methods

Neural model

The neural simulations performed in this work are based on
the Leabra framework in the Emergent simulation software,
described in (O’Reilly and Munakata, 2000). Emergent is a
full-featured neural network simulator descended from
PDP and PDP++. Emergent primarily supports complex, and

multi-regional brain models (see Aisa, Mingus, & O’Reilly,
2008 for a detailed description).

Within the Emergent simulator, neurons summate excit-
atory, inhibitory, and leak conductances into a membrane
potential that is thresholded and passed through a non-
linear function to produce rate coded outputs. Layers in
the model use ensembles of excitatory neurons with
k-winner-take-all inhibition to simulate both populations
efficiently. Learning is accomplished through a mixture of
Hebbian and error driven learning that incorporates an
adaptive threshold for firing. The model operates in 2
phases: a minus phase where only input stimuli are clamped
onto input units (with no synaptic modification), and a plus
phase where both input and output units are clamped (i.e.,
allowed to fire). Differential neural activations from the two
phases drive error driven learning. Connections between
layers follow a variety of topologies, including one-to-one,
full, and geometric to create specific receptive fields.

Behavioral task

Human subjects (N = 123) and neural models (N = 40) played
a variant of the patch foraging task adapted to a geospatial
intelligence setting against a dynamic computer opponent.
Subjects were told that the opponent’s strategy would
change exactly once during 30 trials. On each trial, subjects
first estimated the likelihood of the opponent’s strategy
between 2 options (aggressive––likely to attack a point of
interest or POI, and passive––less likely to attack the
POI). In this task, an attack implicates an aggressive oppo-
nent strategy with a higher likelihood (although it is not con-
stant across the 4 trail conditions), and a not-attack
implicates a passive opponent (see Fig. 1, attack likelihoods
averaged across all four trail conditions are 35% for passive
and 65% for aggressive). After 1 non-attack and 9 attacks,
for example, a subject might rate the computer opponent
is 10% likely to be passive and 90% likely to be aggressive.
After reporting strategy beliefs, subjects received intelli-
gence layers or INTs that indicated the probability of an
attack from the computer opponent. Subjects then chose
to either divert or not divert against a potential attack.
Next, the computer opponent would either attack the POI
or not and subjects would receive payoff information based
on their decision (e.g., not diverting when there was attack
was a loss). At trials 10, 20, and 30 and only those trials,
subjects were allowed to create a ‘‘batch plot’’ to examine
the history of attacks in previous trials. After this batch
plot, they could revise their beliefs of the computer oppo-
nent strategy and proceed with assessing the probability
of an attack given intelligence layers on subsequent trials.
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