
Alleviating the curse of dimensionality – A
psychologically-inspired approach

Vladislav D. Veksler *, Kevin A. Gluck, Christopher W. Myers, Jack Harris,
Thomas Mielke

Air Force Research Laboratory, Wright-Patterson AFB, USA

Received 7 November 2014; accepted 7 November 2014

KEYWORDS
Combinatorics;
Function approximation;
Chunking;
Unitization;
Configural-cue;
EPAM;
ACT-R;
Reinforcement learning;
Memory activation

Abstract

Various combinations of perceptual features are relevant for learning and action-selection.
However, the storage of all possible feature combinations presents computationally impracti-
cal, and psychologically implausible, memory requirements in non-trivial environments due to a
state-space explosion. Some psychological models suggest that feature combinations, or
chunks, should be generated at a conservative rate (Feigenbaum and Simon, 1984). Other
models suggest that chunk retrieval is based on statistical regularities in the environment,
i.e. recency and frequency (Anderson and Schooler, 1991). We present a computational model
for chunk learning based on these two principles, and demonstrate how combining these
principles alleviates state-space explosion, producing exponential memory savings while
maintaining a high level of performance.
ª 2014 Elsevier B.V. All rights reserved.

Introduction

Decision making depends on the set of features perceived at
decision time. Heart attack diagnoses depend on patient
symptoms, such as chest pain and electrocardiogram read-
ings; cyber attack detection and response depends on fea-
tures of network activity; and the decision to break or turn
in a critical driving situation depends on the sizes, locations,
and direction vectors of nearby cars, pedestrians, and other

obstacles. Whether the goal is to understand, predict, or aid
human decision-making, or whether it is to achieve human-
level performance in complex environments, inferring
state-representation from perceived features is an impor-
tant problem in Cognitive Science and Artificial Intelligence.

Cognitive architectures are often based on production
systems (Anderson, 1993; Laird, 2012), where each produc-
tion is a rule that specifies a condition (state) and an action
to be fired whenever this condition is met. One of the great-
est difficulties in the development of a cognitive model is in
accounting for all the states that the model could encounter
in a given task-environment. The inability to account for all

http://dx.doi.org/10.1016/j.bica.2014.11.007
2212-683X/ª 2014 Elsevier B.V. All rights reserved.

* Corresponding author.
E-mail address: vdv718@gmail.com (V.D. Veksler).

Biologically Inspired Cognitive Architectures (2014) 10, 51–60

Avai lab le a t www.sc ienced i rec t .com

ScienceDirect

journal homepage: www.elsev ier .com/ locate /b ica

http://crossmark.crossref.org/dialog/?doi=10.1016/j.bica.2014.11.007&domain=pdf
http://dx.doi.org/10.1016/j.bica.2014.11.007
mailto:vdv718@gmail.com
http://dx.doi.org/10.1016/j.bica.2014.11.007
http://dx.doi.org/10.1016/j.bica.2014.11.007
www.sciencedirect.com
http://www.elsevier.com/locate/bica

potential states generates brittle models that halt in the
face of error.

Autonomous agents in machine learning are often based
on Reinforcement Learning (RL) (Sutton & Barto, 1998), tak-
ing a similar approach to production systems, but assuming
all possible rules, or state-action pairs. That is, rather than
specifying which rules are appropriate in a given environ-
ment, RL agents contain all possible state-action pairs in a
lookup table, and select which actions to fire based on prior
reward feedback recorded for each state-action pair. How-
ever, in environments where each state comprises numerous
perceptual features, treating each unique combination of
percepts as a state (lookup-based RL) is extremely ineffi-
cient. As Sutton and Barto (1998) point out, ‘‘The problem
is not just the memory needed for large tables, but the time
and data needed to fill them accurately. In other words, the
key issue is that of generalization.’’ For example, a lookup-
based RL agent may learn that eating red and green apples is
rewarding, but will fail to generalize, and will produce ran-
dom-level behavior when encountering a yellow apple.

Rather than treating each unique input as a state, it is
possible to treat each perceptual feature as a state (fea-
ture-based RL). Assuming a world where perceptual fea-
tures may be {red, green, yellow, brown, apple,
chocolate, . . .}, rather than reinforcing the action of eating
for red apples and green apples, a feature-based RL agent
would reinforce the red-eat, green-eat, and apple-eat
state-action pairs. This would work well for the ability to
generalize to yellow apples, having learned positive rein-
forcement for the apple-eat rule. However, such an agent
could not learn about rule exceptions. For example, let us
assume that the apple category has an exception, and
brown apples in this world do not taste good (whereas other
brown objects, such as chocolate, do taste good). Feature-
based RL would fail to learn about the brown apple
instance, or any such feature combination (e.g. the XOR
problem).

Hand-coded models are brittle, lookup-based agents can-
not generalize, and feature-based agents cannot learn
exceptions. A brown apple is neither just brown, nor just
an apple, nor just a brown apple. It is all of these things
simultaneously, and any of these representations may be
important for both learning and action-selection. Identify-
ing the object as a brown-apple may be inefficient, and
identifying it as just an apple may be misleading. Concur-
rent representation of all features combinations, a.k.a.
chunks1 or configural-cues (Gluck & Bower, 1988b; Wagner
& Rescorla, 1972), would allow for learning of both generic
rules (e.g. apples taste good) and exceptions to those rules
(e.g. brown apples are spoiled).

Indeed, each set of perceptual features may potentially
be recognized as all possible combinations of those fea-
tures. Perceptual input flarge; square;whitegmay be repre-
sented as seven different states: flargeg; fsquareg;
fwhiteg; flarge; squareg; flarge;whiteg; fsquare;whiteg,

and flarge; square;whiteg. The problem with such repre-
sentation is that too many memory chunks would be
required in complex environments. A mere ten binary
perceptual inputs (e.g. black vs white, large vs small) will
require 59,048 chunks to be present in memory.2 If each
perceptual input allowed for five possible values (e.g. black,
dark-gray, gray, light-gray, white), ten such input dimen-
sions would result in almost ten million chunks. Twenty such
perceptual dimensions would result in 95 trillion chunks.
One hundred inputs with ten values per input would result
in more chunks than there are atoms in the universe.
The exponential growth of memory based on combinations
of perceptual features is referred to as the state-space
explosion problem, or the curse of dimensionality
(Bellman, 1961).

To be clear, the problems with storing all possible chunk
combinations, hand-coding models, or using lookup-based
and feature-based agents are all well-known. These alterna-
tives are presented here (1) to point out that ultimately we
would like computational agents to learn generic situational
rules, as well as exceptions to those situations, as well as
exceptions to those exceptions, and so on, and (2) to
highlight the difficulty with achieving this behavior. In prac-
tice, generalization for RL agents is done via one of many
existing function approximation techniques.3 These include
neural networks, support vector machines, coarse coding
(e.g. CMAC or tiling), decision trees, sparse distributed
memory, radial basis function networks, and case-based rea-
soning (a.k.a instance-based or memory-based) methods
(Kaelbling, Littman, & Moore, 1996; Sutton & Barto, 1998).
Each of these methods provides advantages under specific
conditions. Decision trees assume generic rules, and then
gradually learn rule exceptions, but cannot learn in environ-
ments where feature-combinations, rather than features
themselves, are predictive of performance (Kaelbling
et al., 1996). Case-based reasoning methods (e.g. k-nearest
neighbor) provide a way to account for all potential rules and
exceptions, but their memory requirements approach those
of lookup-based RL in persistent environments (Ratitch &
Precup, 2004). Other methods greatly reduce memory
demands, but require a priori knowledge about the task-
environment (e.g. total number of rules needed to solve a
task) (Kaelbling et al., 1996; Ratitch & Precup, 2004).

1 We use the term chunk to refer to perceptual chunks, as is the
case in EPAM/CHREST (Feigenbaum & Simon, 1984; Gobet et al.,
2001). The term chunk has a slightly different use in the SOAR
literature (Laird, 2012), referring to the creation of a production
based on a resolved impasse – this is not the definition that we
adopt in this paper.

2 Given n features (e.g. large; square;white), we can create a
chunk for every combination of feature presence and absence
(flargeg; fsquareg; fwhiteg; flarge; squareg; flarge; whiteg; fsquare;
whiteg, and flarge; square;whiteg). If we represent feature presence
as a 1 and feature absence as a 0, we can represent each chunk as a
binary number, and the total number of possible chunks is the total
number of possible binary numbers, minus the blank chunk, which is
2n � 1. When each feature dimension can have two potential values,
the total number of possible chunks is 3n � 1. With k � 1 possible
values on n feature dimensions, we can have at most kn � 1 possible
chunks to represent all potential feature combinations.
3 Function approximation has two purposes, dimensionality

reduction and discretization of a continuous state-space. In this
paper we assume a pre-discretized state-space. In the case of a
continuos state-space, single-dimension function approximation
(which is a much more tractable problem than multi-dimensional
function approximation) may be done for each input dimension, and
the conservative-rational mechanism proposed in this paper may be
employed for dealing with the high dimensionality.

52 V.D. Veksler et al.

Download English Version:

https://daneshyari.com/en/article/378259

Download Persian Version:

https://daneshyari.com/article/378259

Daneshyari.com

https://daneshyari.com/en/article/378259
https://daneshyari.com/article/378259
https://daneshyari.com

