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Abstract

In this paper we consider optimization as an approach for quickly and flexibly developing hybrid
cognitive capabilities that are efficient, scalable, and can exploit task knowledge to improve
solution speed and quality. Given this context, we focus on the Three-Weight Algorithm, which
is interruptible, scalable, and aims to solve general optimization problems. We propose novel
methods by which to integrate diverse forms of task knowledge with this algorithm in order to
improve expressiveness, efficiency, and scaling across a variety of problems. To demonstrate
these techniques, we focus on two large-scale constraint-satisfaction domains, Sudoku and cir-
cle packing. In Sudoku, we efficiently and dynamically integrate knowledge of logically deduced
sub-problem solutions; this integration leads to improved system reactivity and greatly reduced
solution time for large problem instances. In circle packing, we efficiently integrate knowledge
of task dynamics, as well as real-time human guidance via mouse gestures; these integrations
lead to greatly improved system reactivity, as well as world-record-breaking solutions on very
large packing problems. These results exemplify how cognitive architecture can integrate high-
level knowledge with powerful optimization techniques in order to effectively and efficiently
contend with a variety of cognitive tasks.
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Introduction

A central goal of cognitive architecture is to integrate in a
task-independent fashion the broad range of cognitive capa-
bilities required for human-level intelligence, and a core
challenge is to implement and interface the diverse process-
ing mechanisms needed to support these capabilities.

The Soar cognitive architecture (Laird, 2012) exemplifies
a common approach to this problem: Soar integrates a
hybrid set of highly specialized algorithms, which leads to
flexibility in the types of task knowledge about which it
can reason and learn; efficiency for real-time domains; and
scalability for long-lived agents in complex environments.
However, since each algorithm is highly optimized, it can
be challenging to experiment with architectural variants.

By contrast, work on the Sigma (R) architecture
(Rosenbloom, 2011) has exemplified how hybrid cognitive
capabilities can arise from uniform computation over
tightly integrated graphical models. When compared with
Soar’s hybrid ecosystem, this approach allows for compara-
ble flexibility but much improved speed of integrating and
experimenting with diverse capabilities. However, utilizing
graphical models as a primary architectural substrate com-
plicates the use of rich knowledge representations (e.g.
rules, episodes, images), as well as maintaining real-time
reactivity over long agent lifetimes in complex domains
(Rosenbloom, 2012).

This paper takes a step towards an intermediate
approach, which embraces a hybrid architectural substrate
(ala Soar), but seeks to leverage optimization over factor
graphs (similar to Sigma) via the Three-Weight Algorithm
(TWA; Derbinsky, Bento, Elser, & Yedidia, 2013) as a general
platform upon which to rapidly and flexibly develop diverse
cognitive-processing modules. We begin by describing why
optimization is a promising formulation for specialized cog-
nitive processing. Then we describe the TWA, focusing on its
generality, efficiency, and scalability. Finally, we present
novel methods for integrating high-level task knowledge
with the TWA to improve expressiveness, efficiency, and
scaling and demonstrate the efficacy of these techniques
in two domains, Sudoku and circle packing.

This paper does not propose a new cognitive architec-
ture, nor does the work result from integrating the TWA
with an existing architecture. Instead, we propose a para-
digm and both present and evaluate a set of methods to
enable research in integrated cognition.

Optimization

A general optimization problem takes the form

minimize
v2Rn

: fðvÞ ¼
XM
a¼1

faðfvgaÞ ð1Þ

where fðvÞ : Rn ! R is the objective function to be
minimized1 over a set of variables v and fa represents a
set of M local cost functions (including ‘‘soft’’ costs and/
or ‘‘hard’’ constraints, those that must be satisfied in a
feasible solution2) over a sub-set of variables fvga.

As we will exemplify with our discussion of the TWA, it is
often useful to consider families or classes of optimization
problems, which are characterized by particular forms of
the objective and constraint functions. For example, much
recent work has been done on convex optimization prob-
lems, in which both the objective and constraint functions
are convex (Boyd & Vandenberghe, 2004). However, neither
the TWA nor our proposed approach are constrained to any
class of optimization problem.

Optimization is a useful framework in the context of
hybrid cognitive processing for two primary reasons: (1)
generality of problem formulation and (2) independence
of objective function and solution method. First, the form
in Eq. (1) is fully general, supporting such diverse processing
as constraint satisfaction (a problem with only hard con-
straints, such as our example tasks) and vision/ perception
(e.g. Geman & Geman, 1984). Often these problems are
represented as a factor graph (Kschischang, Frey, &
Loeliger, 2001), as exemplified in Fig. 1. Like other graphi-
cal models, factor graphs decompose the objective function
into independent local cost functions, reducing the combi-
natorics that arise with functions of multiple variables.

Another important reason to embrace an optimization
framework is that the objective function is formulated inde-
pendently from the method by which the corresponding
problem is solved. This abstraction supports flexibility in
experimenting with objective variants without requiring
significant effort to change a corresponding algorithm.
However, objective-function changes may impact the speed
and success rate of a particular optimization algorithm, and
thus it is advantageous to use an optimization algorithm
that can specialize to particular classes of objective func-
tions, as well as adapt solving strategies when provided
higher-level sources of task knowledge (issues we discuss
in greater depth later).

Related work

Broadly speaking, optimization has been applied in three
main ways within the cognitive-architecture community.
First, optimization has been applied as a methodological

Fig. 1 Factor graph of an optimization problem whose
objective function is fðvÞ¼ f1ðv1;vnÞþ f2ðvnÞþ . . .þ fmðv1;vnÞ.
The circles (right) represent the variables, while the squares
(left) represent hard or soft cost functions. If a line connects a
square to a circle, that means that the cost function depends on
the variable.

1 By convention we consider minimization, but maximization can
be achieved by inverting the sign of the objective function.
2 These functions return 0 when satisfied, 1 otherwise.
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