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In Jones and Goel (2012), we describe a meta-reasoning architecture that uses abstraction
networks (ANs) and empirical verification procedures (EVPs) to ground self-diagnosis and
B T— self-repair of domain knowledge in perception. In particular, we showed that when a hierarchi-
Perceptual grounding; cal classifier organized as an AN makes an incorrect prediction, then meta-reasoning can help
Symbol grounding; diagnose and repair the semantics of the concepts in the network. Further, we demonstrated
Classification learning that if an EVP associated with each concept in the network can verify the semantics of that con-
cept at diagnosis time, then the meta-reasoner can perform knowledge diagnosis and repair
tractably. In this article, we report on three additional results on the use of perceptually
grounded meta-reasoning for correcting prediction errors. Firstly, a new theoretical analysis
indicates that the meta-reasoning diagnostic procedure is optimal and establishes the knowl-
edge conditions under which the learning converges. Secondly, an empirical study indicates
that the EVPs themselves can be adapted through refining the conceptual semantics. Thirdly,
another empirical study shows that if EVPs cannot be defined for all concepts in a hierarchy,
the computational technique degrades gracefully. While the theoretical analysis provides a
deeper explanation of the sources of power in ANs, the two empirical studies demonstrate ways
in which the strong assumptions made by ANs in their most basic form can be relaxed.
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Cramon, & Schubotz, 2010; Kveraga, Ghuman, & Bar, 2007).
Instead of passively receiving information from the external
world for internal processing, brains proactively use knowl-
edge available internally to make predictions about the
external world, verifying the predictions, and making correc-
tions to their knowledge if and when the predictions turn out
tobeincorrect. Clark (2012) provides a good review of this re-
search on brains as predictive, error-correcting systems from
a cognitive science perspective. As he notes, much of the re-
search on the predictive nature of brains so far has focused on
perception and action. Rao and Ballard (1999), for example,
provide a computational model of predictive coding in the vi-
sual cortex. Kveraga et al. (2007) suggest that the brain’s pre-
dictive mechanisms are top-down. Bubic et al. (2010) suggest
that the predictive brain is the basis of not only of perception,
but also of much of cognition. Dietrich (2004) proposes that
the predictive brain is also the basis of higher-level cognitive
processes of creativity.

In Al too predictions have been the source of power of
many a technique for reasoning and learning. As an exam-
ple, expectation generation is fundamental to Schank’s cog-
nitively inspired techniques for sentence, discourse and
story understanding (Schank, 1983; Schank & Abelson,
1977). As another example, Winston’s (1992) textbook de-
scribes identification and correction of mistakes in domain
knowledge as a basic learning strategy.

Modern Al often is characterized by the notion of intelli-
gent agents (Russell & Norvig, 2010). An intelligent agent is
situated in the external world, with learning and reasoning
grounded in perception and action (Wooldridge & Jennings,
1995). We may view an intelligent agent as operating in sev-
eral ‘‘mental spaces’’ (Cox & Raja, 2011; Goel & Jones,
2011, chap. 10): At the *‘ground level,’’ the agent may map
percepts in the world to actions on it; at the ‘‘object level’’,
the agent may use memory and knowledge to make plans for
acting on the world; and at the ‘‘meta-level’’, the agent may
use meta-reasoning — reasoning about reasoning — to monitor
and control its decision making at the object level. This paper
is concerned about an agent’s use of meta-reasoning for cor-
recting predictive errors by correcting the agent’s domain
knowledge. A central thesis of this work is that it is useful
to ground meta-reasoning in predictive agents in perception
and action for the purposes of error correction.

In most agent architectures that include meta-reasoning
Cox and Raja (2011), while deliberation at the object level
is grounded in perception and action, introspection and
reflection at the meta-level typically operate only on the
deliberation at the object level, separately from perception
and action at the ground level. In contrast, in (Jones & Goel,
2012), we described a computational architecture for
grounding meta-reasoning in perception and action. Fig. 1
illustrates our agent architecture with perceptually grounded
meta-reasoning. As in traditional agent architectures, meta-
reasoning monitors the processing at the object-level and
controls it if needed. However, unlike the traditional agent
architectures, meta-reasoning in our agent architecture also
receives perceptual inputs from the world and selects actions
for execution in the world as indicated in Fig. 1.

As we described in (Jones & Goel, 2012), the need for
this grounding of meta-reasoning in perception and action
arises because of the predictive nature of our intelligent
agents. To illustrate, let us consider compositional classi-
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Fig. 1 Our agent architecture for grounding meta-reasoning
in perception.

fication in which raw state features of the world are pro-
gressively abstracted through a series of classifications in
an abstraction hierarchy until a top level target classifica-
tion is produced. We call this hierarchy an abstraction net-
work (AN). Fig. 2 illustrates a generic AN. Now consider a
scenario in which the compositional classifier organized in
an abstraction network generates a prediction that at some
later time turns out to be incorrect. In this scenario, the
meta-reasoner may seek to diagnose and repair the AN. This
self-diagnosis and self-repair of the AN entails detection of
errors in the processing and/or the knowledge in the AN
based on violations of expectations of the environment. In
our technique for perceptually grounded meta-reasoning,
these expectations are explicitly represented in ANs as
Empirical Verification Procedures (EVPs), which tie domain
knowledge stored at an node in the AN to predictions about
the outcomes of actions and observations in the environ-
ment. Thus, to employ these EVPs for diagnosis and repair
of domain, the meta-reasoner needs to observe not only
the processing at the object level, but also the percepts
at ground level. Further, when the meta-reasoner identifies
problems at the object level through this kind of monitor-
ing, it may need the agent to take some actions in the envi-
ronment in order to gather more information to resolve the
problems. For example, the meta-level may execute EVPs at
intermediate nodes in an AN to determine which chunks of
knowledge are responsible for an observed top-level predic-
tion error. Finally, as shown in Fig. 2, metaknowledge used
by the meta-reasoner may be directly distributed over the
domain knowledge structures rather than being confined
to the meta-level. That is, the EVPs are encoded as part
of an agent’s AN. As we described in (Jones & Goel,
2012), the Augur system implements and evaluates the
above architecture, knowledge representation, and compu-
tational technique in multiple domains." In (Jones & Goel,
2012), a comparison of Augur’s AN-based error correction
technique with similar techniques (e.g. ANN backpropaga-
tion) is presented, and the compatibility of ANs with various
kinds of classification techniques (operating within the AN
nodes) is also discussed.

However, our past work left several theoretical and
experimental questions unanswered. What is the number of
hypotheses expressible inan AN for a compositional classifier?
Is the diagnostic procedure used by the meta-reasoner opti-
mal? Under what conditions does the learning converge? Might

T Although we use the term ‘‘network’’ in abstraction networks
for generality, all of our work so far has focused on abstraction
trees.
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