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Multi-agent system; This paper presents a reinforcement learning algorithm, which is inspired by human team
Remforcement \eaming; dynamics, for autonomous robotic multi agent applications. Individual agents on the team have
:Vr\‘)é?(l:’;frl?ggs Type heterogeneous capabilities and responsibilities. The learning algorithm assigns strictly local
Robot tea,\ming; credit assignments to individual agents promoting scalability of the team size. The Personality
Heterogeneous robot team Adjusted Learner (PAL) algorithm is applied to heterogeneous teams of robots with reward
adjustments modified from earlier work on homogeneous teams and an information-based
action personality type assignment algorithm has been incorporated. The PAL algorithm was
tested in a robot combat scenario against both static and learning opponent teams. The PAL
team studied included distinct commander, driver, and gunner agents for each robot. The per-
sonality preferences for each agent were varied systematically to uncover team performance
sensitivities to agent personality preference assignments. The results show a significant sensi-
tivity for the commander agent. This agent selected the robot strategy, and it was noted that
the better performing commander personalities were linked to team oriented actions, rather
than more selfish strategies. The driver and gunner agent performance remained insensitive
to personality assignment. The driver and gunner actions did not apply at the strategic level,
indicating that personality preferences may be important for agents responsible for learning
to cooperate intentionally with teammates.
© 2013 Elsevier B.V. All rights reserved.

Introduction

As robotic agents become more capable and less expensive,

* Corresponding author. Tel.: +1 862 219 5193. there is an increasing potential for teams of robots to inter-
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chung@stevens.edu (J. Chung), kishore.pochiraju@stevens.edu achieve tasks. One way to compose a high performance
(K. Pochiraju). team is to implement multi agent learning for the agents,
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so that the agents themselves can learn the best policies to
work together. Systems in which each agent is responsible
for learning its own policies are termed concurrent learning
systems (Panait & Luke, 2005). These systems have the ben-
efit of open-ended scalability when the design of individual
agents is not linked to the design of a number of other
agents in the team. Also, when a human based psychological
model for personality preferences is incorporated into the
agents, this approach applies directly to the BICA Challenge
to create a real-life computational equivalent of the human
mind (Samsonovich, 2012). We explore the effectiveness of
human-like personality preferences to change learned
behaviors and improve team performance, which is envi-
sioned to lead to improved implicit and naturally occurring
cooperation with other agents and eventually with human
teammates.

In cooperating heterogenous teams, determining how the
actions of individual agents influence the achievement of
the team goals is quite difficult. This has been referred to
as the credit assighment problem (Panait & Luke, 2005),
and several approaches to solving this problem have been
explored in the literature (Agogino & Tumer, 2006; Balch,
1997; Chang, Ho, & Kaelbling, 2003; Kalyanakrishnan
et al., 2009; Mataric, 1994; Makar, Mahadevan, &
Ghavamzadeh, 2001; Santana, Ramalho, Corruble, & Ratitch,
2004; Tangamchit, Dolan, & Khosla, 2002; Tumer, Agogino,
& Wolpert, 2002; Tumer & Agogino, 2006; Wolpert & Tumer,
2001). Many of these approaches use reinforcement learn-
ing, which defines a reward scheme that enable the agents
to learn cooperation. Recently, the authors (Recchia,
Chung, & Pochiraju, 2013) have developed a local reward
scheme inspired by human teaming concepts which was
shown to promote team development in a scarce resource
gathering task for a team of agents with homogeneous capa-
bilities. This paper extends that work by adapting the algo-
rithm to be used on a team of agents with heterogeneous
capabilities in a combat scenario, and investigating its ef-
fects on team performance.

Background

In the current investigation, a team of heterogeneous
agents capable of adapting through personality adjusted
reinforcement learning are studied in a combat scenario
against both a static and learning opponent team. The capa-
bility of the agents to learn to take the best actions to in-
crease team performance is measured in order to evaluate
the effect of assigning various personality preferences to
the different types of agents. Because this investigation
integrates ideas from various backgrounds, a brief overview
of the relevant concepts is warranted.

There are five important aspects to the current investiga-
tion. The first aspect pertains to agent learning. Q-learning
was selected for this study as a representative type of rein-
forcement learning. The second aspect is related to the
solutions of the credit assighment problem for cooperative
multi agent systems. The third is the application of person-
ality types as inspiration for the agent teaming scheme. The
Myers—Briggs Type Indicator (MBTI) (Myers & Myers, 1995),
which is a human psychology tool, is explored in this inves-
tigation. The fourth aspect is related to the use of an

information based model (Lowen, 1982) to classify action
decisions into the MBTI structure. The fifth aspect is the
implementation framework for conducting performance
simulations. Each of these aspects is discussed in this
section.

Q-learning

One of the widely used adaptive algorithms for robot
control in dynamic environments is Q-learning (Arkin,
1998; Sutton & Barto, 1998; Watkins & Dayan, 1992). In this
algorithm, a robotic agent is characterized by a state vec-
tor, X, and can choose to perform an action, a; € d, which
is the set of all possible actions. The Q-function defines a
value that represents the utility of the action, a;, given
the current state, X. Normally, the problem is discretized,
so the Q-function is represented by a table of values for
all possible state-action combinations. This table is calcu-
lated recursively on-the-fly by the agent as it performs ac-
tions and evaluates a reward/punishment equation that
depends on the agent’s goal. The standard update equation
for the Q-function is:

Qnew(iv ai) = Q()?v G,-) + O((I' + VmaX(Q(Vv a)) - Q()_(‘v G,-)) (1)

where « is the learning rate parameter that controls how
quickly the agent learns; r is the reward or punishment re-
ceived; vy is the discount factor that controls how much
the agent plans for future states; max(Q(V, d)) is the utility
of state y, which results from taking action a; from state X.
It is the maximum value of Q(V, d), over all possible actions,
d. Every time an agent takes an action, one entry in its Q-
function is updated to reflect the utility of taking that ac-
tion from the state the agent was in at the time. In this
way, the Q-function represents the current estimate of
the optimal policy for the agent to follow to achieve its goal
(Sutton & Barto, 1998; Watkins & Dayan, 1992).

Often the agent is trying to achieve its goal even before
the Q function has completely converged to an optimal pol-
icy. In this case it is necessary for it to decide if it should
follow the current policy, or to try something new at any gi-
ven decision point. One popular algorithm to handle this is
called the ¢-greedy policy. In this policy, a parameter be-
tween 0 and 1, ¢, is set by the designer. During execution,
a random draw between 0 and 1 is made by the agent. If
the drawn number is less than ¢, the agent tries a random
action to explore its options. If it is greater than ¢, the agent
exploits the current Q function recommended action. This
ensures that as the number of actions taken goes to infinity,
all state action pairs are visited (Sutton & Barto, 1998).

Credit assignment

Several researchers investigated the credit assignment
problem using global rewards to enable relatively small
teams of agents to learn cooperative behaviors. Balch
(1997) and Tangamchit et al. (2002) studied the effect of
using global versus local rewards on teams of concurrently
learning agents with reinforcement learning (RL). Balch
investigated the emergence of teaming behavior on a glob-
ally rewarded soccer team and reported on the superior per-
formance of the globally rewarded team versus the locally
rewarded one. Tangamchit et al. compared the perfor-
mance of globally versus locally rewarded agent teams in



Download English Version:

https://daneshyari.com/en/article/378303

Download Persian Version:

https://daneshyari.com/article/378303

Daneshyari.com


https://daneshyari.com/en/article/378303
https://daneshyari.com/article/378303
https://daneshyari.com

