
Original article

RPK-table based efficient algorithm for join-aggregate query on MapReduce

Zhan Li a, Qi Feng b, Wei Chen c, Tengjiao Wang a,*
a Peking University, China

b Natural Science Foundation of China, China
c The Chinese University of Hong Kong, Hong Kong, China

Available online 28 May 2016

Abstract

Join-aggregate is an important and widely used operation in database system. However, it is time-consuming to process join-aggregate
query in big data environment, especially on MapReduce framework. The main bottlenecks contain two aspects: lots of I/O caused by
temporary data and heavy communication overhead between different data nodes during query processing. To overcome such disadvantages,
we design a data structure called Reference Primary Key table (RPK-table) which stores the relationship of primary key and foreign key
between tables. Based on this structure, we propose an improved algorithm on MapReduce framework for join-aggregate query. Experi-
ments on TPC-H dataset demonstrate that our algorithm outperforms existing methods in terms of communication cost and query response
time.
Copyright © 2016, Chongqing University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the
CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Keywords: Join-aggregate query; MapReduce; Query optimization; RPK-table; Communication cost

1. Introduction

Recently, big data attracts more and more attention. Join-
aggregate query which returns aggregate information on the
join of several tables is widely used in big data analysis. For
instance, many TPC-H1 queries contain joinaggregate opera-
tion for performance evaluation. However, it is time-
consuming to run join-aggregate query in existing systems
like Hive [1] and Pig [2].

Distributed system has been proven powerful for large-
scale datasets analysis. MapReduce [3] is an important par-
allel computing framework in distributed system. It has been
studied and applied widely in academia and industry. How-
ever, both the join and aggregate operation processed on
MapReduce are time-consuming [4,5]. The main performance

bottlenecks come from the following aspects: reading and
writing lots of temporary data on disk and heavy communi-
cation overhead between different data nodes. The overall
response time increases when the data size scales up.

Consider of the following query in TPC-H:

SELECT c.name, COUNT(*) FROM Customer c, Orders o
WHERE c.custkey ¼ o.custkey GROUP BY c.name

This SQL query uses TPC-H benchmark schema and
computes the number of orders that every customer takes. As
the join attribute and aggregate attribute are not the same, we
can't execute join operation and aggregate operation in one
single MapReduce job. Traditional approach to execute this
query need two MapReduce jobs. First job loads two table,
exchanges tuples between different data nodes, performs the
join operation on the two datasets and then writes the joined
result on disk. Then the second job loads the temporary joined
result and computes the final aggregate results. The overall
computation is time-consuming due to the heavy communi-
cation cost and I/O cost. When queries contain multiple joins

* Corresponding author. Internet Research and Engineering Center, School

of Electronic and Computer Engineering, Peking University, China. Tel.: þ86

755 26035225.

E-mail address: tjwang@pku.edu.cn (T. Wang).

Peer review under responsibility of Chongqing University of Technology.
1 www.tpc.org/tpch.

Available online at www.sciencedirect.com

ScienceDirect

CAAI Transactions on Intelligence Technology 1 (2016) 79e89
http://www.journals.elsevier.com/caai-transactions-on-intelligence-technology/

http://dx.doi.org/10.1016/j.trit.2016.03.008

2468-2322/Copyright © 2016, Chongqing University of Technology. Production and hosting by Elsevier B.V. This is an open access article under the CC BY-NC-

ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

http://creativecommons.org/licenses/by-nc-nd/4.0/
mailto:tjwang@pku.edu.cn
http://www.tpc.org/tpch
www.sciencedirect.com/science/journal/24682322
http://dx.doi.org/10.1016/j.trit.2016.03.008
http://dx.doi.org/10.1016/j.trit.2016.03.008
http://www.journals.elsevier.com/caai-transactions-on-intelligence-technology/
http://dx.doi.org/10.1016/j.trit.2016.03.008
http://creativecommons.org/licenses/by-nc-nd/4.0/


on different tables, the query performance will continue to
decrease.

To overcome the above drawbacks, we design a data
structure called Reference Primary Key table (RPK-table). In
RPK-table we store the relationship of primary key and
foreign key between tables. This structure is independent of
remote data distribution and movement in environment. We
also propose a new algorithm for join-aggregate query
execution on MapReduce. We only need one single MapRe-
duce job for join-aggregate query. The major performance
disadvantages, communication cost and I/O cost, is reduced in
our algorithm with the help of RPK-table. Experiments in
Section 4 validate the effectiveness of our proposed algorithm
in improving the query response time.

The rest of the paper is organized as follows. We review the
related work in Section 2. In Section 3, we describe our pro-
posed structure RPK-table and explain our algorithm pro-
cessed on MapReduce framework. Section 4 shows the
performance of our algorithm. Finally we state the conclusion
in Section 5.

2. Related work

Both aggregate query and join query have been studied in
many recent research works. We analyze some related works
which optimize query processing in different situations. These
fall into the following broad categories:

� Optimization method for performance improvement in
traditional database. Previous works such as [6,7] propose
several methods to improve the query performance in
traditional database. Their methods like concurrent
execution of multiple queries, indexing techniques and
physical database design are hard to be implemented and
maintained in distributed environment. They also do not
consider communication cost during query execution. Join
Partition Method (JPM) and Aggregate Partition Method
(APM) [8] are two parallel processing methods for join-
aggregate query. The JPM method need to process
aggregate and join operation separately. The APM method
need to broadcast one whole table into all processors.
These two methods are sub-optimal on MapReduce
framework.

� Modifying or extending MapReduce framework to
improve performance. Some researchers [11,12] extend
map-reduce model to process join aggregate in one job.
Some researchers [13e15] aim to improve the perfor-
mance by building middleware or cache structure on top of
MapReduce framework. These are optimizations specif-
ically on join strategies and they need to modify the core
framework of MapReduce. Our proposed algorithm, on the
other hand, is more general and can improve the efficiency
of join-aggregate operator.

� Pre-computing query results. Some analysis systems store
huge amount of data for decision-making. The time in-
terval of data updating in these systems is long enough.
Thus some query results can be pre-computed ahead and

stored on the disk [16,17]. However, as new data is
generated more and more rapidly, data updating becomes
more and more frequently. Re-computing query results
when data updates becomes complicate and time-
consuming. Also this approach cannot assure the effi-
ciency of adhoc query processing for data-intensive
application. We focus on improving join-aggregate
computation without pre-computation techniques.

� Approximate query processing. Some researchers use
approximation method to decrease query response time.
These approaches contain sample method [21] and online
computation [18e20]. They return an approximate result
with a certain error bound or guarantee for each query.
The response time will decrease a lot but they do not
provide an exact result. Furthermore, its requirement for
random data retrieval makes it difficult to be performed
on distributed system. The goal of our work is to design
an algorithm which improves the performance of join-
aggregate queries without sacrificing accuracy.

3. Our approach

In distributed system the whole dataset is partitioned and
located in different nodes depending on the availability of
storage resources. During join-aggregate query execution,
each worker accesses data splits from different nodes and
then performs join operation on primary and foreign key
attributes.

After that the required attribute values are filtered and the
aggregate results are computed. When the data size is huge,
the execution may become complex. Lots of temporal data
need to be written and read in disk and the communication
overhead between different nodes may increase heavily. This
will result in increasing query processing time and decreasing
system performance. To achieve better performance, we first
design a new data structure which minimizes the storage cost.
Then we propose an optimization join-aggregate query pro-
cessing algorithm on MapReduce with the help of our
structure.

3.1. Data structure RPK-table

In this sub-section, we describe the Reference Primary Key
table. Then we explain the reason for designing it and the way
to store it.

First we give our definitions here.

Definition 1. Table which contains the primary key in table
relationship between primary and foreign key is defined as
target table.

Definition 2. Table which contains the foreign key in table
relationship between primary and foreign key is defined as
reference table.

Since join-aggregate queries often perform equi-join
on tables in their primary and foreign keys, we design a
structure called RPK-table. In RPK-table, we store the

80 Z. Li et al. / CAAI Transactions on Intelligence Technology 1 (2016) 79e89



Download English Version:

https://daneshyari.com/en/article/378342

Download Persian Version:

https://daneshyari.com/article/378342

Daneshyari.com

https://daneshyari.com/en/article/378342
https://daneshyari.com/article/378342
https://daneshyari.com

