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Abstract

Bayesian models of cognition hypothesize that human brains make sense of data by representing probability distributions and apply-
ing Bayes’ rule to find the best explanation for available data. Understanding the neural mechanisms underlying probabilistic models
remains important because Bayesian models provide a computational framework, rather than specifying mechanistic processes. Here,
we propose a deterministic neural-network model which estimates and represents probability distributions from observable events—a
phenomenon related to the concept of probability matching. Our model learns to represent probabilities without receiving any represen-
tation of them from the external world, but rather by experiencing the occurrence patterns of individual events. Our neural implemen-
tation of probability matching is paired with a neural module applying Bayes’ rule, forming a comprehensive neural scheme to simulate
human Bayesian learning and inference. Our model also provides novel explanations of base-rate neglect, a notable deviation from
Bayes.
� 2016 Elsevier B.V. All rights reserved.
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1. Introduction

Bayesian models are now prominent across a wide range
of problems in cognitive science including inductive learn-
ing (Tenenbaum, Kemp, & Shafto, 2006), language acqui-
sition (Chater & Manning, 2006), and vision (Yuille &
Kersten, 2006). These models characterize a rational solu-
tion to problems in cognition and perception in which
inferences about different hypotheses are made with limited
data under uncertainty. In Bayesian models, beliefs are rep-
resented by probability distributions and are updated by
Bayesian inference as additional data become available.
For example, the baseline probability of having cancer is

lower than that of having a cold or heartburn. Coughing
is more likely caused by cancer or cold than by heartburn.
Thus, the most probable diagnosis for coughing is a cold,
because having a cold has a high probability both before
and after the coughing is observed. Bayesian models of
cognition state that humans make inferences in a similar
fashion. More formally, these models hypothesize that
humans make sense of data by representing probability dis-
tributions and applying Bayes’ rule to find the best expla-
nation for available data.

Forming internal representations of probabilities of dif-
ferent hypotheses (as a measure of belief) is one of the most
important components of several explanatory frameworks.
For example, in decision theory, many experiments show
that participants select alternatives proportional to their
frequency of occurrence. This means that in many scenar-
ios, instead of maximizing their utility by always choosing
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the alternative with the higher chance of reward, they
match the underlying probabilities of different alternatives.
For a review, see Vulkan (2000).

There are several challenges for Bayesian models of cog-
nition as suggested by recent critiques (Bowers & Davis,
2012; Eberhardt & Danks, 2011; Jones & Love, 2011;
Marcus & Davis, 2013). First, these models mainly operate
at Marr’s computational level (Marr, 1982), with no
account of the mechanisms underlying behavior. That is,
they are not concerned with how people actually learn
and represent the underlying probabilities. Jones and
Love (2011, p. 175) characterize this neglect of mechanism
as ‘‘the most radical aspect of Bayesian Fundamentalism”.
Second, in current Bayesian models, it is typical for cogni-
tive structures and hypotheses to be designed by research-
ers, and for Bayes’ rule to select the best hypothesis or
structure to explain the available evidence (Shultz, 2007).
Such models often do not typically explain or provide
insight into the origin of such hypotheses and structures.
Bayesian models are under-constrained in the sense that
they predict various outcomes depending on assumed pri-
ors and likelihoods (Bowers & Davis, 2012). Finally, it is
shown that people can be rather poor Bayesians and devi-
ate from the optimal Bayes’ rule due to biases such as base-
rate neglect, the representativeness heuristic, and confusion
about the direction of conditional probabilities (Eberhardt
& Danks, 2011; Eddy, 1982; Kahneman & Tversky, 1996;
Marcus & Davis, 2013).

In this paper, we address some of these challenges by
providing a psychologically plausible neural framework
to explain probabilistic models of cognition at Marr’s
implementation level. As the main component of our
framework, we study how deterministic neural networks
can learn to represent probability distributions; these distri-
butions can serve later as priors or likelihoods in a Baye-
sian framework. We consider deterministic networks
because from a modeling perspective, it is important to
see whether randomness and probabilistic representations
can emerge as a property of a population of deterministic
units rather than a built-in property of individual stochas-
tic units. For our framework to be psychologically plausi-
ble it requires two important properties: (i) it needs to
learn the underlying distributions from observable inputs
(e.g., binary inputs indicating whether an event occurred
or not) and (ii) it needs to adapt to the complexity of the
distributions or changes in the probabilities. We discuss
these aspects in more details later.

The question of how people perform Bayesian computa-
tions (including probability representations) can be
answered at two levels (Marr, 1982). First, it can be
explained at the level of psychological processes, showing
that Bayesian computations can be carried out by modules
similar to the ones used in other psychological process
models (Kruschke, 2006). Second, probabilistic computa-
tions can also be treated at a neural level, explaining how
these computations could be performed by a population
of connected neurons (Ma, Beck, Latham, & Pouget,

2006). Our artificial neural network framework combines
these two approaches. It provides a neurally–based model
of probabilistic learning and inference that can be used
to simulate and explain a variety of psychological
phenomena.

We use this comprehensive modular neural implementa-
tion of Bayesian learning and inference to explain some of
the well-known deviations from Bayes’ rule, such as base-
rate neglect, in a neurally plausible fashion. In sum, by pro-
viding a psychologically plausible implementation-level
explanation of probabilistic models of cognition, we
integrate some seemingly contradictory accounts within a
unified framework.

The paper is organized as follows. First, we review
necessary background material and introduce the prob-
lem’s setup and notation. Then, we introduce our proposed
framework for realizing probability matching with neural
networks. Next, we present empirical results and discuss
some relevant phenomena often observed in human and
animal learning. Finally, we propose a neural implementa-
tion of Bayesian learning and inference, and show that
base-rate neglect can be implemented by a weight-
disruption mechanism.

2. Learning probability distributions via deterministic units

2.1. Problem setup

The first goal of this paper is to introduce networks that
learn probability distributions from realistic inputs. We
consider the general case of multivariate probability distri-
butions defined over q P 1 different random variables,
X ¼ ðX 1;X 2; . . . ;XqÞ. We represent the value of the density
function by pðXjHÞ, where H represents the functional
form and parameters of the distribution. We assume that
H is unknown in advance and thus would need to be
learned. As shown in Fig. 1, the neural network learning
this multivariate distribution has q input units correspond-
ing to ðX 1;X 2; . . . ;XqÞ and one output unit corresponding
to pðXjHÞ.

Fig. 1. The basic structure of the network learning a q-dimensional
probability distributions. Both structural details and connection weights in
the hidden layers are learned.
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