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Abstract

Recent behavioral data show that the traditional reduction of all probabilistic choices to choices among monetary gambles is inac-
curate. Specifically, while decision makers tend to overweight low probabilities of obtaining any resource, the overweighting is greater
when the resource is more emotionally evocative. We present a shunting nonlinear neural network that simulates the biasing effect of
emotion on probabilistic choice. The network includes analogs of parts of the amygdala, orbitofrontal cortex, ventral striatum, thalamus,
and anterior cingulate as well as sensory and premotor cortices. The network classifies prospective probabilistic options by means of an
adaptive resonance module with vigilance selective for those attributes that are deemed most significant for the option currently being
processed. The categories into which these options are placed embody significant gists of the options in a manner consistent with fuzzy
trace theory.
� 2011 Elsevier B.V. All rights reserved.
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1. Introduction

One aspect of human decision making data that deviates
from classical economic models is the nonlinear weighting
of probabilities. Experiments on choices between explicitly
described gambles show that human decision makers tend
to overweight low nonzero probabilities and underweight
high non-unity probabilities. Tversky and Kahneman’s
(1992) prospect theory includes a mathematical formula-
tion of this nonlinear probability weighting, as shown by
the S-shaped curve of Fig. 1.

Yet Tversky and Kahneman’s theory tacitly assumed
that specific probabilities had the same weights regardless
of what resource they dealt with; for example, a certain per-
centage probability of saving a person’s life, avoiding dam-
age to one’s house, or winning a trip to Europe in a raffle
could all be reduced to the same monetary gamble. Against
this simplifying assumption, there is significant evidence

that the curvature of the S in Fig. 1 is different for different
types of resources. For example, Rottenstreich and Hsee
(2001) asked some of their participants if they would rather
obtain $50 or the kiss of their favorite movie star, and the
majority (70%) preferred the money. But when the same
participants were given a hypothetical choice between a
1% probability of obtaining the $50 and a 1% probability
of obtaining the kiss, the majority (65%) preferred the kiss.
Rottenstreich and Hsee explained their finding by noting
that the kiss was affect-rich whereas the money was
affect-poor. They concluded that a low nonzero probability
of obtaining an affect-rich resource is more strongly over-
weighted than the same low probability of obtaining an
affect-poor resource, as described in Fig. 2.

The kiss-money data actually deal with curvature of the
S curves only at the end closest to probability 0. Another
result by Rottenstreich and Hsee (2001) indicates that
affective richness also leads to sharper curvature at the
end closest to probability 1. These researchers asked
another set of participants how much they would be willing
to pay for a 99% probability of obtaining a $500 tuition
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rebate (affect-poor) and for a 99% probability of obtaining
$500 toward a trip to European tourist destinations (affect-
rich: these were American students). The median price that
the participants were willing to pay for the almost-certain
European trip was $28 lower than the median they were
willing to pay for the almost-certain tuition rebate, indicat-
ing that the gap between a 99% and a 100% probability was
psychologically larger in the affect-rich case.

Variability in the shape of the S-curve is also supported
by results of Kusev, van Schaik, Ayton, Dent, and Chater
(2009) who framed equivalent probabilistic choices either
as insurance purchases – for example, “(a) 1% chance of
losing your luggage, which is worth £400, or (b) buying
insurance at a cost of £20 to insure against the loss of your
luggage” (Kusev et al., 2009, p. 1489) or as monetary
gambles. When the decision was framed in an insurance
context, the participants overweighted not only small prob-
abilities but also, to a lesser degree, mid-range probabilities
and even probabilities just less than 1. In prospect theory
terms, that meant that their S-curves were above the 45�
line for probabilities from 0 to about .8. However, this
overweighting only occurred with insurance losses. For

insurance-gain scenarios – for example, “(a) 1% chance of
winning an insurance rebate of £400 or (b) a guaranteed
insurance rebate of £20” (Kusev et al., 2009, p. 1489) –
all probabilities of gains above .2 but less than 1 were
underweighted.

Gonzalez and Wu (1999) fit the S-shaped curve of pros-
pect theory to a specific mathematical function with several
cognitively significant parameters. However, these
researchers did not include a theory of underlying cognitive
or neural processes that generate those parameters. There
have been partial mappings of prospect theory to brain
processes (Tom, Fox, Trepel, & Poldrack, 2007; Trepel,
Fox, & Poldrack, 2005) but these mappings have not yet
been integrated into a quantitative model.

Our goal is to develop a neurocognitive theory that can
account for characteristic human distortions of probability
processing. As part of this theoretical process, we develop
and simulate a brain-based neural network model of the
Rottenstreich and Hsee (2001) data on probability weight-
ing with affect-rich and affect-poor resources. Our model
does not generate an explicit probability weighting curve,
but instead treats probabilities as one attribute of complex
stimuli that are processed as a whole. The model incorpo-
rates elements of several existing theories that have been
utilized in the simulation of other cognitive data: the adap-
tive resonance theory of categorization (Carpenter &
Grossberg, 1987); the gated dipole theory of affective con-
trasts (Grossberg & Gutowski, 1987); and the fuzzy trace
theory of memory (Reyna & Brainerd, 2008; Reyna, Lloyd,
& Brainerd, 2003). The model also incorporates roles for
different prefrontal and limbic regions that are compatible
with fMRI results on emotionally influenced decision mak-
ing (DeMartino, Kumaran, Seymour, & Dolan, 2006).

2. Background and structure of the model

2.1. Fuzzy emotional traces

One of the clues to understanding nonlinear probability
weights arises from fuzzy trace theory (Reyna et al., 2003).
Fuzzy trace theory posits the coexistence and interaction of
two distinct systems for encoding information: literal or
verbatim encoding, and intuitive or gist encoding. Verbatim
encoding means literal storage of facts, whereas gist encod-
ing means storing the essential intuitive meaning or “gist”
of a situation.

As Reyna et al. (2003) note, gist encoding of probabilities
tends toward all-or-none representations of risk. That is, the
gist encoding perceives gambles as “certainty,” “no chance,”
or “some chance” of a particular gain or loss, and the precise
probability of that gain or loss is largely neglected. For this
reason, gist encoding tends to reduce the relative attractive-
ness of sure losses and enhance the relative attractiveness of
sure gains in comparison with risky alternatives. The S-
shaped function of Fig. 1 was interpreted in Levine (2011)
as a nonlinear weighted average of an all-or-none step func-
tion arising from gist encoding and a linear function arising
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Fig. 1. Typical weighting curve from prospect theory (made continuous at
0 and 1). (Reprinted from Levine, 2011, with the permission of Springer-
Verlag.).
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Fig. 2. Possible affect-poor and affect-rich probability weighting curves.
(Adapted from Rottenstreich & Hsee, 2001, with the permission of Sage
Publications.).
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