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Abstract

Donald Hebb proposed a hypothesis that specialised groups of neurons, called cell-assemblies (CAs), form the basis for neural encod-
ing of symbols in the human mind. It is not clear, however, how CAs can be re-used and combined to form new representations as in
classical symbolic systems. We demonstrate that Hebbian learning of synaptic weights alone is not adequate for all tasks, and that addi-
tional meta-control processes should be involved. We describe an earlier proposed architecture (Belavkin & Huyck, 2008) implementing
an adaptive conflict resolution process between CAs, and then evaluate it by modelling the probability matching phenomenon in a classic
two-choice task. The model and its results are discussed in view of mathematical theory of learning and existing cognitive architectures.
� 2010 Elsevier B.V. All rights reserved.
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1. Introduction

There exists a variety of artificial systems and algorithms
for learning and adaptation. Most of them can be classified
as sub-symbolic (e.g. Bayesian and connectionist networks)
or symbolic systems (e.g. rule-based systems). Known nat-
ural learning systems use neural networks, and therefore
can be classified as using sub-symbolic computations. A
distinguishing feature of the human mind, however, is the
ability to use rich symbolic representations and language.

From an information-theoretic point of view, symbols
are elements of some finite set that are used to encode dis-
crete categories of sub-symbolic information. They enable
communication of information about the environment or
a complex problem in a compact form. One obvious ben-
efit is that with language, one can learn not only from
one’s own experience, but also from experiences of others.

The benefits of reading a guidebook before going abroad
are obvious.

The duality between sub-symbolic and symbolic
approaches has been studied in cognitive science. There exist
sub-symbolic (i.e. connectionist), symbolic (e.g. SOAR,
Newell, 1990) and hybrid architectures (e.g. ACT-R, Ander-
son & Lebiere, 1998) for cognitive modelling. These different
approaches, however, have not yet explained where the sym-
bols are in the human mind, or how the brain implements
symbolic information processing (though see Jilk, Lebiere,
O’Reilly, & Anderson, 2008).

It was proposed by Hebb (1949) that symbols are repre-
sented in the brain not by individual neurons, but by corre-
lated activities of groups of cells, called cell-assemblies

(CAs). The cell-assemblies robot project (CABOT) set out to
test and demonstrate this idea in an engineering task by
building an artificial agent, situated in a virtual environment,
capable of complex symbolic processing, and implemented
entirely using CAs of simulated neurons. Some of the objec-
tives have already been achieved and reported elsewhere (e.g.
Huyck & Belavkin, 2006, 2007, 2008). The architecture and
some of these works will be discussed in the next section.
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The work described in this paper is concerned with a
particular aspect of the project—a stochastic conflict reso-
lution and meta-control mechanism that modulates Heb-
bian learning to allow for re-use and combination of CAs
into new representations, such as learning logical implica-
tions (i.e. procedural knowledge). As will be discussed in
this paper, this cannot be achieved by using a Hebbian
learning mechanism alone. A unique contribution of this
work is evaluation of the meta-control mechanism in a cog-
nitive model of the probability matching phenomenon in a
two-choice experiment (Friedman et al., 1964). The results
suggest that a proposed mechanism is a plausible model.
Some neurophysiological studies and hypotheses about
the brain circuitry will be discussed supporting the biolog-
ical plausibility of the architecture.

In the next section, we describe briefly the neural model
that is used in our architecture, how simulated neurons
form cell-assemblies and how we use them to test the CA
hypothesis of symbolic processing. Then we discuss the
problem of learning connections between existing CAs.
This process is important for learning new symbolic knowl-
edge by re-using and combining existing symbolic represen-
tations. In particular, we focus on the problem of learning
the correct set of rules from the set of all possible rules con-
necting existing antecedents and consequents. Here we
draw the parallel with the ACT-R conflict resolution mecha-
nism. Using a mathematical theory of stochastic learning,
we argue that utility (or reinforcement) and stochastic
noise are essential components of this process, and that
they are not included in the Hebbian principle for adapta-
tion of synaptic weights. The neural architecture imple-
menting the utility-based stochastic learning of the
connections between CAs is explained in Section 4, and
its performance is demonstrated in an experiment. Section
5 presents the same architecture simulating the probability
matching phenomenon as observed by Friedman et al.
(1964), and a comparison with the hybrid model based
on the ACT-R architecture is drawn. We then summarise
contributions of this work and discuss its potential future
development.

2. Cell-assemblies as the basis of symbols

In this section, we outline some of the basic features of
the CABOT architecture as well as the CA hypothesis.

2.1. Neural information processing in CABOT

It is widely accepted that human cognition is the result
of the activity of approximately 1011 neurons in the central
nervous system that interact with each other as well as with
the outside world via the peripheral nervous system. Bio-
logical neurons are complex systems, and they have been
modelled with various levels of details (McCulloch & Pitts,
1943, 1952). In our system, we use fatiguing, leaky, inte-
grate and fire (fLIF) neurons.

The ‘integrate and fire’ component is based on the clas-
sical idea that the neuron ‘fires’ (or spikes) if its action
potential, A, exceeds a certain threshold value h:

y ¼
1 if A P h

0 otherwise

�

The action potential, A, is a function of the integral (inner
product) hx;wi ¼

Pk
i¼1xiwi of the stimulus (pre-synaptic)

vector x 2 Rk and the synaptic weight vector w 2 Rk of
the neuron. Here, Rk is a k-dimensional Euclidean space,
where k is the number of synapses to the neuron. We use
binary signals, and therefore x is a k-dimensional binary
vector.

The ‘leaky’ property refers to a more complex (non-lin-
ear) dependency of the action potential on the pre- and
post-synaptic activity:

Atþ1 ¼
At

dt
þ hxt;wti; dt ¼

1 if fired ðyt ¼ 1Þ
d P 1 otherwise

�
ð1Þ

Thus, the action potential is accumulated over several time
moments if the neuron does not fire. Parameter d P 1 al-
lows for some of this activation to ‘leak’ away. This is
the LIF model (Maas & Bishop, 2001).

The ‘fatigue’ property refers to a dynamic threshold that
is defined as follows:

htþ1 ¼ ht þ F t; F t ¼
F þ P 0 if fired ðyt ¼ 1Þ
F � < 0 otherwise

�
ð2Þ

where values F+ and F� represent the fatigue and fatigue
recovery rates. Thus, if a neuron fires at time t, its threshold
increases, and it is less likely to fire at time t + 1.

The fatiguing and leaky properties of the neural model
allow for a non-trivial dynamics of the system. Repetitive
stimulation of excitatory synapses increases the probability
of a neuron to fire, even if the weights have small (positive)
values. On the other hand, if the neuron fires repetitively,
its threshold increases reducing the chance of it firing
again. Thus, frequencies of pre- and post-synaptic activities
are important factors in our system.

The weights of a neuron adapt according to the follow-
ing compensatory rule Huyck, 2007:

Dwij ¼
að1� wijÞeW B�W i if xt ¼ 1; yt ¼ 1

�awijeW i�W B if xt ¼ 1; yt ¼ 0

�

where a 2 [0,1] is the learning rate parameter, WB is a con-
stant representing the average total synaptic strength of the
pre-synaptic neuron, and Wi is the current total synaptic
strength (see Huyck (2007), for details). Note that absolute
values of the weights wij here are in the interval [0,1], and
the rule ensures that the new weight depends on the corre-
lation between the pre-synaptic, xt, and the post-synaptic,
yt, activities, which is an implementation of the Hebbian
principle.

The above described properties are known characteris-
tics of biological neurons, and our model is a compromise
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