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Abstract

Evaluating variations in the structure of computational models of cognition is as important as evaluating variations in the numerical
parameters of such models. However, computational models tend not to be organized in such a way as to directly support such research.
To address this need, we have taken the well-known cognitive architecture ACT-R, reduced it to its fundamental components, and recon-
structed it. Our new system, Python ACT-R, facilitates exploration of the space of possible models and architectures based on the core
ACT-R theory. The result has enabled us to examine the possibility of using basic ACT-R components such as the declarative memory
system in new ways; for example, as the basis for a new visual attention system. Python ACT-R allows the same model definition syntax
to be used to define both ACT-R models and new ACT-R components, as well as making explicit the processes specified by the ACT-R
theory.
� 2007 Elsevier B.V. All rights reserved.
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Cognitive modeling, as a science, involves not only
building and evaluating models, but also effectively com-
municating these results and enabling further research with
these models. Communication becomes increasingly diffi-
cult as the audience knows less and less about the particu-
lar approach that was used. For example, it is easier for
neural network researchers to communicate to other neural
network researchers than it is for them to communicate to
production system researchers, and it is even harder to
communicate to those who do not use cognitive modeling
at all.

The concept of a cognitive architecture was put forward
by Newell (1990) to deal with the problem that the behav-
ioral sciences, and psychology in particular, study the mind
by dividing it up into specialized sub-fields, without

attempting to assemble the results into an integrated model
of the mind. Cognitive architectures are meant to be a way
to do this. Anderson (1993) further clarified the concept of
cognitive architectures with his distinction between frame-
works, theories, and models; where frameworks are general
claims about cognition, theories are specific formulations
about how the frameworks operate, and models are the
theories applied to specific tasks and behaviors. Cognitive
architectures are theories about how the mind integrates
different processes to produce thoughts and behaviors.

Because cognitive architectures tend to be complex, they
are often expressed as computer programs. Within the
cognitive modeling community this is generally regarded
as a good thing because it means that the theory is precisely
specified, avoiding ambiguity and vague statements.
However, outside the community it is often viewed with
suspicion. Indeed, it is often felt that modelers merely write
computer code that mimics the human data (i.e., that
modeling is merely descriptive). In order for non-modelers
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to be convinced that this is not happening, we need clear
descriptions of the architectures and how they are used.

In this paper, we start with an overall description of the
process of modeling. We discuss the importance of examin-
ing the effects of the numerical parameters of models, and
extend this to also cover the non-numerical parameters that
specify the overall architecture of the model. Although it is
as important to explore the architectural variations of a
model as it is to explore the parameter-based variations,
it is currently difficult to do so without extensive program-
ming skills. The second half of this paper describes our
progress in rebuilding the ACT-R cognitive architecture
to support this sort of exploration. The result is a system
called Python ACT-R. The goal of Python ACT-R is to
make varying the architecture as easy as varying the
numerical parameters of the architecture.

1. Modeling methodology

When creating a computational cognitive model of a
phenomenon, we are not merely attempting to create a
computer program which produces the same outputs for
a given input as is empirically observed. If this is all that
is required for a successful model, then we would be satis-
fied with trivial special-case models that merely encode a
description of the phenomenon. Instead, a scientifically
useful cognitive model will be based in a particular theory
of the functional architecture that underlies the behavior
itself. Importantly, this fundamental architecture must be
able to support multiple phenomena, allowing for general-
ization to new situations.

In this section, we describe the approach to modeling
that has led us to our re-conception of ACT-R, and which
is the basis of our modeling work. For the purposes of this
paper, we will focus on the concept of variation among
models. That is, how does the performance of a model
change as aspects of that model are changed? And how
should this be interpreted within a scientific method? For
further discussion of these issues, including more attention
to the companion aspects of model measurement and com-
munication, see our previous work (e.g., Stewart, 2006).

1.1. Model variation

It is common within the general practice of computa-
tional modeling for there to be a certain flexibility in terms
of parameter settings. That is, the overall theory may spec-
ify the structures and the processes occurring in the model,
but the particular numerical values for a learning parame-
ter or a reaction speed may be left unspecified. The adjust-
ment of these parameters affects the overall performance,
and a major part of the modeling process tends to involve
adjusting these parameters to find values for which the
model behavior matches the empirical data.

This adjustment, however, opens the door to a common
criticism of computational models. If there are enough
parameters in the model it is possible that it can be adjusted

to produce any possible (or plausible) result. This ‘‘param-
eter tweaking’’ has been used to call into question the entire
process of computational modeling (e.g., Roberts & Pash-
ler, 2000). If a theory is flexible enough to produce any rea-
sonable outcome, then we must question the usefulness of
that theory.

However, for most theories, we do not have a situation
where any outcome is possible. Instead, parameters can be
adjusted to produce a certain range of outcomes, con-
strained by the overall structure of the model. Tradition-
ally, modelers have focused on finding the one parameter
setting which ‘‘best fits’’ the observed data (usually by sam-
pling a portion of the space of parameters). Unfortunately,
reporting this one best parameter setting does not provide
information about the flexibility of the model. However,
when the same modeling architecture is used for a variety
of different tasks, it is possible to identify particular param-
eter values that are consistently used. ACT-R researchers
have identified particular ‘‘canonical’’ parameter values
that should generally be used, and any deviation from these
values should be seen as requiring further explanation. For
example, few ACT-R models have a production firing time
that is not exactly 50 ms. Other parameters, such as the
latency and activation noise levels (which will be described
later in this paper) tend to vary more widely between
models.

In contrast, our approach is to identify ranges of param-
eter settings that produce models that match to within a

certain degree. That is, instead of reporting that the model
performs best if parameter X is set to 5, we instead indicate
that the model performs well if the parameter is between 2
and 6, for example. This, in turn, requires a measurement
of the degree of match between the model and reality. This
can be a traditional measure such as mean-squared error or
even correlation, but we recommend a measure of statisti-
cal equivalence that takes into account the confidence
intervals of the model and real data (which are generally
quite large). That is, instead of measuring the difference
between the sample means of the model data and the
human data, we would instead measure the maximum
spread between the confidence intervals of the means of
these two data sets. This avoids over-fitting to the sample.
For more information, see Stewart (2006).

1.2. Exploring the model space

In addition to parameter values, this approach can also
be applied to modifications to the underlying architecture
itself (such as using slightly different structures or learning
rules or other implementation details). Our approach is to
consider these types of changes as qualitative, or non-
numerical, parameter changes. The main issue with non-
numerical parameter changes is the absence of well-defined,
continuous parameter ranges. However, it should be noted
that this is a problem for numerical parameters as well.
After all, we are generally not proving that every parameter
setting between 2 and 6 produces a good model; instead we
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