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Due to the complex nature of graph representations, the isomorphism testing between a pair of
labeled graphs becomes one of the most time-consuming procedures during the process of
graph-based data mining. In order to reduce this bottleneck, in this paper we propose a novel
efficient algorithm to perform isomorphism testing of labeled graphs which in general performs
less state-space tree searching. The proposedmethod uses graph signatures as the first-step filter,
and it limits the backtracking occurring only between each pair of corresponding vertex classes,
based on the proposed data structures and the vertex partition method. We compared the
proposed method with state-of-the-art methods to verify its efficiency for several datasets each
with different aspects of characteristics. The experimental results show that for irregular graphs,
either labeled or unlabeled, the proposed method outperforms the compared methods in
efficiency. For graphs with multiple labels but high regularity, the proposed method is still better
than the compared methods. The result of this algorithm is directly applicable to those emerging
applications related to graph-based data mining which need to perform isomorphism testing of
labeled graphs in large databases.
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1. Introduction

Graphs are suitable for modeling a variety of real-world complex structures with the benefits of being capable of
characterizing the spatial, topological, geometric, or abstract properties among the objects in the modeled data sets [1]. In many
application areas, objects are symbolized as vertices in a graph and the relationships between object pairs are represented as
edges joining the vertex pairs. In such graphs, each of vertices and edges is assigned a label to denote the object class and to
convey the relation held between a pair of objects, respectively. For example, in a molecular structure an atom corresponds to a
vertex and a bond between two atoms is represented as an edge between two vertices. The vertices are assigned labels that stand
for the atom types (e.g. C, H) and the labels of edges are the bond types or the relative 3D orientations between a pair of atoms in
such structures [2,3]. In geographical information systems, objects or spatial elements are vertices and the relationships between
object pairs are edges that hold the information of adjacency, connectivity, and containment [4]. Another application is image
retrieval, in which vertices denote the recognized objects in an image and edges are the spatial or topological relationships
between pairs of objects [5–7].

For the fields appropriately modeled by graphs, one of the emerging topics is to discover the recurring substructures or
patterns in the graph database, which is the collection of all the modeled instances. Taking the molecular biology as an example,
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mining the frequent topological structures in order to identify novel RNAs or protein structures is vital for researchers in this field
[2,3]. Finding the frequent common chemical substructures is also helpful for toxicologists to classify new toxic substances [8].
There are still more applications such as computer networks, pattern recognition, social network analysis, andWebmining which
are also of great need to find frequently occurring patterns.

The approaches to graph-based data mining can be categorized into five groups, among which the mathematical graph theory
based approach is closely related to the substance of graph based modeling [23]. The recent graph theory based methods include
AGM (Apriori-based Graph Mining) [9], FSG (Frequent SubGraph discovery) [1], gSpan (graph-based Substructure pattern
mining) [10], FFSM (Fast Frequent Subgraph Mining) [8], etc. The graph/subgraph isomorphism testing plays the key role during
the whole process of frequent subgraph (pattern) mining, which usually comprises candidate generation and frequency counting
[1,10]. The subgraph isomorphism testing problem is NP-complete whereas there is no known polynomial-time algorithm for the
isomorphism testing of general graphs [11–14]. However, for some specific kinds of graphs, polynomial-time testing algorithms
had been proposed. For example, trees can be tested in linear time [15], and so are planar graphs [16]. In addition, an O(n3log n)
algorithm was proposed for graphs with at most three edges incident on every vertex [17].

For the methods handling general kinds of graphs, most of the previous works are dedicated to unlabeled graphs [18–20],
which are graphs that only convey structural (adjacent or not) information. Among these efforts, the NAUTY algorithm [21,22] is
known to be one of the fastest algorithms for unlabeled graph isomorphism testing [1,23]. However, NAUTY does not allow
graphs to have edge labels; hence it is not applicable to labeled graphs [1].

Algorithms for the isomorphism testing between two general labeled graphs can be roughly divided into two types. The first
type of methods such as Ullmann [24] and VF2 [19] can be characterized by the backtracking on the search state-space tree. They
employ both structural and label constraints for matching each promising vertex pair. Although the theoretical worst time

complexity isO n
ffiffi
n

p� �
, the effort made by these methods can cut the size of the search tree effectively. The second type of methods

such as FSG [1] uses the canonical code as the representation of a graph, by which two graphs are isomorphic if and only if their
canonical codes are identical. Below are the brief discussions of these methods.

Ullmann proposed a backtracking method that significantly reduces the size of the search tree. In this method, a refinement
procedure is employed that eliminates unpromising successor nodes in the state space tree searching. It is still one of the most
commonly used methods for exact graph matching [20].

Another outstanding algorithm VF2, also based on depth-first search (DFS) strategy, employs some sophisticated feasibility
rules that prune unpromising vertex pairs in the searching on a state-space tree. According to the experimental results reported in
Foggia et al. and De Santo et al. [25], VF2 performs better for sparse or high structural regularity graphs. VF2, as well as Ullmann,
can work under the structural constraints as synthetic rules and label constraints as semantic rules.

The work of FSG combines several types of vertex invariants to partition the vertices into equivalence classes, by which the
vertices in the same class have the same vertex invariants such as vertex degrees, vertex labels, and vertex neighbor lists. In FSG,
the canonical code of a graph is defined to be the smallest code composed of the vertex labels followed by the concatenation of the
columns of the upper triangular adjacency matrix over all possible permutations of the vertices. If the vertices of a graph with n
vertices are partitioned into c classes π1, π2,…, πc, then the number of different permutations need to be considered in order to
find that the canonical code is Πi = 1 ~ c(|πi|!), which is substantially faster than the n! permutations required by the earlier
approaches [1].

In this paper, we propose a new algorithm CISC (Class-wise ISomorphism testing with limited baCktracking) to perform the
isomorphism testing of general labeled graphs. By the best usage of the features of labeled graphs, CISC combines several
techniques to improve the overall performance. In the worst case, the amount of considered candidates (nodes visited in the
search state-space tree) is O(Σi = 1 ~ c(|πi|!)), in which the product of all |πi|! terms is replaced by the sum of the terms, compared
with O(Πi = 1 ~ c(|πi|!)) [1]. In addition to its theoretical advantages, CISC also possesses the efficiency benefit in practical cases.
According to the results of the conducted experiments, CISC outperforms Ullmann, FSG, and VF2 for multiple labeled graphs or
irregular unlabeled graphs. The main contribution of CISC is that it can be directly applied to the work that needs to perform
labeled graph isomorphism testing such as graph-based data mining.

The remaining of the paper is organized as follows. Section 2 discusses the definitions about labeled graphs and proofs of some
lemmas for the proposed algorithm. In Section 3, we will introduce the algorithm and the related procedures. The experimental
results of comparing the average matching times with three well-known methods are in Section 4. Section 5 concludes our work
with future direction.
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Fig. 1. Three labeled graphs and the canonical matrix of graph H in (c).

18 S.-M. Hsieh et al. / Data & Knowledge Engineering 91 (2014) 17–33



Download English Version:

https://daneshyari.com/en/article/378793

Download Persian Version:

https://daneshyari.com/article/378793

Daneshyari.com

https://daneshyari.com/en/article/378793
https://daneshyari.com/article/378793
https://daneshyari.com

