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a r t i c l e i n f o a b s t r a c t

Available online 11 April 2015 Computer-graphics multi-physical model has been used to assist the clinician in their decision-
making processes. In particular, patient specific musculoskeletal modeling usingmedical imaging
data and physical laws has demonstrated great potential for future clinical analysis of the lumbar
spine. The main objective of this present work was to propose a data-driven modeling workflow
to create computer-graphics multi-physical model frommultimodal medical imaging data to ex-
tract useful clinical simulation knowledge leading to better diagnosis and treatment of human dis-
eases such as low back pain. Computed Tomography (CT) data and tissue-based physical laws
were used to create geometries as well as to compute full patient specific anthropometrical prop-
erties of a patient specific multi-physical lumbar spine model. Kinematical range of motion and
spinal curvatures were derived from in vivo dynamic MRI. Then, these multimodal data were
combined into the developedmodel to estimate the lumbar spine muscle forces using inverse dy-
namics and static optimization. Finally, kinematic behavior of thedevelopedmodelwas evaluated.
As results, maximal estimated forces of all muscle groups range from 3 to 40 N for hyperlordosis
motion. The highermuscle forceswere estimated in iliocostalis lumborumpars lumborummuscle
group. The simulated spinal curvatures ranging from 2.7909 to 3.1745 (1/m) are within the range
of values (from 2.02 to 9.6142 (1/m)) measured from in vivo dynamic MRI. This study suggested
thatmultimodalmedical imaging data derived fromCT and dynamicMRI could be of great interest
in the development of computer-graphics multi-physical model as well as in the estimation of
kinematical ranges of motion, their evaluation and muscle forces for biomechanical applications.

© 2015 Elsevier B.V. All rights reserved.
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1. Introduction

Knowledge extraction frombiomedical data is one of themost challenging topics in the health engineering [1–3]. Frombiomedical
informatics point of view, knowledge could be derived from complex multimodal and multidimensional data [4–8]. In the context of
biomedical applications, there are many approaches to extract the knowledge such as machine learning or physics-based simulation
[9]. Physics-based simulation approach deals with the use of multimodal biomedical data and computer-graphics multi-physical
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model to quantify unobservable information such asmuscle forces duringmotions. Once this information is obtained, it could be used
to assist the clinicians in their medical decision-making.

Lumbar spine is one of the most important load-sharing structures of the human body. In addition to its protective function for
vital internal organs, this structure allows internal and external loads to be transmitted through back muscles, intervertebral joints,
ligaments and discs in a coordinative manner [10]. Lumbar spine muscles play an essential role in the generation of spinal motions.
The coordination of these muscles contributes to the stability of the trunk and the whole body under internal and external loadings.
In fact, the understanding of this complexmechanical behavior of the lumbar spine structures plays an important role in the diagnosis
of low back pain as well as in the prescription of appropriate and optimal functional rehabilitation treatment planning [11–16]. For
these purposes, musculoskeletal modeling of the lumbar spine is commonly used to provide information (e.g. tissue stress, muscle
force or joint loading) inside the lumbar spine structures and to determine how the mechanical behavior of lumbar spine works in
normal and abnormal cases.

Lumbar spine ranges of motion are commonly acquired using medical imaging (e.g. 2D radiography [17] or biplanar radiography
[18] or dualfluoroscopic imaging [19] or UprightMRI [20]) ormotion capture techniques (e.g. electromagnetic tracking system [21] or
computerized dynamic motion analysis devices [22,23] or 3Dmotion tracking systemwith implanted bone pins [24]). Medical imag-
ing techniques provide internal accurate lumbar spine ranges of motion while motion capture provides external ranges of motion.
However, imaging techniques provide only quasi-static motions rather than real dynamic motion [25]. Moreover, due to limited
range of motion and spatial/temporal image resolution, medical imaging approach needs further developments and investigations
to provide accuratemotion data. Furthermore, invasive character of some techniques limits their use in vivo [17,18,24] even they pro-
vide accurate motion data. Consequently, the first objective of this present study was to use non-invasive conventional dynamic MRI
technique to provide in vivo spinal kinematic data reflecting the real lumbar spine motions.

In the literature, a number of in silico deformable lumbar spinemodels have been developed to study the in vivo and in vitro tissue
stress under internal and external loading conditions [26–33]. Medical imaging techniques such as Magnetic Resonance Imaging
(MRI) or Computed Tomography (CT) and finite element method allow lumbar spine model to be developed partially in a subject
or patient specific manner. Besides, in silico rigid multi-body models of the lumbar spine ranging from basic free body diagram [34]
to 3D musculoskeletal model [35–39] have been developed. These 3D lumbar spine rigid multi-body models showed variation of
the number of muscles to be considered. For example, LifeMOD/ADAMS model includes 6 erector spinae muscle fascicles [40]. Any-
Bodymodel includes 154muscle fascicles [37]. Enhanced AnyBodymodel has 214muscle fascicles [39]. Themost physiologically de-
tailed musculoskeletal model is the OpenSIM model including 238 muscle fascicles [38]. Moreover, passive stiffness structures
(Intervertebral Disc (IVD)) and intra-abdominal pressure (IAP) activations were also taken into consideration [39]. Some models
were used to analyze the postural effect and stabilities or to optimize the correction of spinal deformities [36,41]. Other models
were developed to be shared and reused to investigate a range of research questions [37,38]. These models used static optimization
to solve the redundancy problem (i.e. number ofmuscles contributed into a specificmotion is greater than the number of physical law
equations describing this motion) for the muscle force estimation [42,43]. Hill-based models [44] ranging from simplest to full ver-
sions were used to describe the trunk muscle behavior. The simplest version deals with the consideration of only maximal muscle
force [36,37,39,45] in the optimization algorithm to estimate muscle forces. There is no Force–Length–Velocity relationship due to
the lack of intrinsic backmuscle-tendon properties such asmusclemoment arm or tendon slack length. Recently, full Hill-basedmus-
cle model was integrated into 3Dmusculoskeletal model for the better description of the simulation muscle behavior [38]. According
to our knowledge, most of these models used generic or parameterized geometries and literature-based properties (e.g. muscle and
joint properties, body segment inertial parameters (BSIP)). Moreover, one should note that these models have not been used for clin-
ical applications. In the framework of the application of in silico models for personalized medicine purpose, patient specific data
should be derived frommedical imaging to provide accurate and reliable data for clinical decision-makingpurpose [43,46]. The second
objective of this present study was to develop a patient specific lumbar spine model with individualized full body segment inertial
parameters (BSIP) and partial muscle properties derived from CT data.

For these purposes, a data-drivenmodelingworkflowwas proposed to create computer-graphicsmulti-physical model frommul-
timodalmedical imagingdata to extract useful clinical knowledge leading to better diagnosis and treatment of humandiseases such as
low back pain. Moreover, literature kinematic range of values was commonly used to perform dynamic simulation [37,38]. The use of
literature data should be evaluated before its use for a clinical application. Consequently, in this present study, we used in vivo kine-
matic data derived from dynamic MRI to evaluate the kinematical behavior of the simulation results of developed model.

2. Materials and methods

2.1. Data-driven modeling workflow for the development of 3D patient specific lumbar spine musculoskeletal model

The workflow consists of following steps (Fig. 1): 1) CT-based patient data acquisition; 2) segmentation of all lumbar spine bony
vertebrae; 3) 3D reconstruction of surface-based vertebral models and computing of their individualized body segment inertial pa-
rameters (BSIP); 4) intervertebral joint (IVD) modeling; 5) muscle modeling using Hill-based rheological model; 6) multi-body dy-
namics using motion data and inverse dynamics; 7) muscle force estimation using static optimization; and 8) model analysis.

2.1.1. CT data acquisition
A Computed Tomography (CT) conventional routine protocol was performed to acquire the anatomical lumbar spine images of

one patient (female: 60 year old, 65 kg body mass, 160 cm height, 25.39 kg/m2 Body Mass Index (BMI)) at the National Center for
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