
Editorial

Fast updated frequent-itemset lattice for transaction deletion

Bay Vo a, Tuong Le b,c,⁎, Tzung-Pei Hongd,e, Bac Le f

a Faculty of Information Technology, Ho Chi Minh City University of Technology, Viet Nam
b Division of Data Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
c Faculty of Information Technology, Ton Duc Thang University, Ho Chi Minh City, Viet Nam
d Department of Computer Science and Information Engineering, National University of Kaohsiung, Kaohsiung, Taiwan, ROC
e Department of Computer Science and Engineering, National Sun Yat-sen University, Kaohsiung, Taiwan, ROC
f Department of Computer Science, University of Science, VNU-Ho Chi Minh, Viet Nam

a r t i c l e i n f o a b s t r a c t

Available online 11 April 2015 The frequent-itemset lattice (FIL) is an effective structure for mining association rules. However,
building an FIL for a modified database requires a lot of time and memory. Currently, there is no
approach for updating an FIL with deleted transactions. Therefore, this paper proposes an
approach for maintaining FILs for transaction deletion without rescanning the original database
if the number of eliminated transactions is smaller than the threshold determined based on the
pre-large and diffset concepts. A diffset-based approach is first used for fast building an FIL.
Then, two proposed approaches (tidset-based and diffset-based) are used for updating the FIL
with transaction deletion. The experiment was conducted to show that the diffset-based
approach outperforms the tidset-based and the batch-mode approaches.

© 2015 Elsevier B.V. All rights reserved.

Keywords:
Data mining
Frequent-itemset lattice
Transaction deletion

1. Introduction

Association rule (AR) mining [1,15,24] is an important problem, which attracts somuch attention of scientists, in data mining and
knowledge discovery. They have wide applications, such as basket data analysis, semantic web mining, text mining and so on. The
traditional methods for mining ARs are divided into two phrases: (i) Mining frequent itemsets (FIs) from databases [5,7,8,18] and
streaming databases [4,19] and (ii)miningARs from FIs. According to the experiments, phase (ii) is easily implemented but it requires
a lot of processing time. Recently, frequent-itemset lattices (FILs) and frequent-closed-itemset lattices (FCILs) have been proposed for
effectivelymining ARs [13,20,21,25]. Building FILs/FCILs takes longer than getting frequent (closed) itemsets, but generating ARs from
FILs/FCILs is more efficient than doing so from frequent (closed) itemsets [17,20]. Therefore, mining ARs based on FILs/FCILs
outperforms the traditional approach when both phases of mining are considered.

In practical applications, databases are typically modified, meaning that transactions are often inserted or deleted. For instance,
inserted transactions will be added to database of the system when customers buy something. Besides, when customers return
their orders or there are a number of errors in orders, those will be removed from the transaction databases. Therefore, mining
ARs, frequent itemsets, class association rules and high utility patterns from modified databases [6,9,16,23] have attracted much
research interest. Fast-UPdate (FUP) [3] is the first algorithm for mining ARs from incremental databases. FUP is an Apriori-based
algorithm that generates candidates and repeatedly scans databases. Since then, methods based on FP-tree [9,10,12] and IT-tree
[14] have been developed for databases with transaction insertion. Incremental mining from sequence databases has also been
developed [2]. Some studies have considered transaction deletion [11]. However, there are no methods proposed for maintaining
FILs with transaction deletion.

Data & Knowledge Engineering 96–97 (2015) 78–89

⁎ Corresponding author at: Division of Data Science, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
E-mail addresses: bayvodinh@gmail.com (B. Vo), lecungtuong@tdt.edu.vn, tuonglecung@gmail.com (T. Le), tphong@nuk.edu.tw (T.-P. Hong),

lhbac@fit.hcmus.edu.vn (B. Le).

http://dx.doi.org/10.1016/j.datak.2015.04.006
0169-023X/© 2015 Elsevier B.V. All rights reserved.

Contents lists available at ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak

http://crossmark.crossref.org/dialog/?doi=10.1016/j.datak.2015.04.006&domain=pdf
http://dx.doi.org/10.1016/j.datak.2015.04.006
mailto:bayvodinh@gmail.com
mailto:lecungtuong@tdt.edu.vn
mailto:tuonglecung@gmail.com
mailto:tphong@nuk.edu.tw
mailto:tuonglecung@gmail.com
http://dx.doi.org/10.1016/j.datak.2015.04.006
http://www.sciencedirect.com/science/journal/0169023X


To deal with the problem of maintaining frequent itemsets for transaction modification, the pre-large concept is proposed to
reduce the need for rescanning an original database. With this concept, the original database does not need to be rescanned if the
number of deleted transactions or inserted transactions is equal to or less than a safety threshold, thus reducing the maintenance
cost. The pre-large concept was later used by La et al. [13] and Vo et al. [21] for fast updating FCILs with transaction insertion.

This paper proposes an approach for maintaining FILs with transaction deletion. First, the proposed approach uses the DFIL
algorithm based on the diffset concept to build FILs. Then, two methods for updating FILs (tidset-based and diffset-based methods)
with transaction deletion are used.

The rest of this paper is organized as follows. Section 2 presents the basic concepts and an effective algorithm based on the
diffset concept for building FILs. Two algorithms for maintaining FILs based on the tidset and the diffset concepts, respectively, with
transaction deletion are proposed in Section 3. Section 4 presents the results of experiments that compare the run time of the
proposed algorithms with that of the batch-mode approaches to show the effectiveness of the proposed algorithms. Finally,
Section 5 summarizes the results and offers some future topics.

2. Basic concepts

2.1. Frequent-itemset lattice building algorithm

Given a databaseDwith n transactions, with each transaction including a set of itemsbelonging to I, where I is the set of all items in
D. An example of a transaction database D1 is presented in Table 1. The support of an itemset X, denoted by σ (X), where X ⊆ I, is the
number of transactions in Dwhich contains all the items in X. An itemset X is called a frequent itemset if σ (X) ≥ minSup × n, where
minSup is a given threshold.

Vo et al. [21] proposed the DFIL algorithm for building FILs. It is summarized as follows.

Definition 1. Let n(X) be a node of a k-itemset X. The child-nodes of n(X) based on the equivalence class property associated with
n(X) are:

yEC n Xð Þð Þ ¼ n XAð Þj∀A∈ Ι;Α∉ Xf g ð1Þ

Definition 2. Let X be a k-itemset. The child-nodes of n(X) based on the lattice property associated with n(X) are:

yL n Xð Þð Þ ¼ n Yð ÞjY is a kþ 1ð Þ−itemset;n Yð Þ∉ yEC n Xð Þð Þ and X ⊂ Yf g ð2Þ

Definition 3. Each node, n(X), in the FIL is a tuple:

X; t Xð Þ; yEC n Xð Þð Þ; yL n Xð Þð Þh i; ð3Þ

where:

- X is an itemset;
- t(X) is the set of IDs associated with the transactions containing X; and
- γEC(n(X)) contains the child-nodes based on the equivalence class property associated with X.
- γL(n(X)) contains the child-nodes based on the lattice property associated with X.

Theorem 1. Let n(XA) be a node of a k-itemset XA. ∀n(XB) ∈ γEC(n(X)), if A is before B in the order of frequent 1-itemsets (sorted in
ascending order of frequency), then ∄n(Y) ∈ γEC(n(XB)) ∪ γL(n(XB)) so that n(Y) ∈ γL(n(XA)).

Theorem 2. Let n(XA) be a node of a k-itemset XA. ∀n(Z) ∈ γL(n(X)), ∄ n(Y) ∈ γL(n(Z)) so that n(Y) ∈ γL(n(XA)).

To understand the application of Theorems 1 and 2, the process of updating a lattice when n(XA) (a k-itemset) is created, is
described below. The existing algorithms [22] have to consider all nodes of Y in the four cases shown in Table 2.

Table 1
Example of a transaction database D1.

Transaction Items

1 A, C, T, W, V
2 C, D, W
3 A, C, T, W
4 A, C, D, W
5 A, C, D, T, W
6 C, D, T

79B. Vo et al. / Data & Knowledge Engineering 96–97 (2015) 78–89



Download English Version:

https://daneshyari.com/en/article/378803

Download Persian Version:

https://daneshyari.com/article/378803

Daneshyari.com

https://daneshyari.com/en/article/378803
https://daneshyari.com/article/378803
https://daneshyari.com

