
Approximation of COSMIC functional size to support early effort
estimation in Agile

Ishrar Hussain⁎, Leila Kosseim, Olga Ormandjieva
Department of Computer Science and Software Engineering, Concordia University, 1400 de Maisonneuve Blvd. West, Montreal, Quebec, Canada H3G 1M8

a r t i c l e i n f o a b s t r a c t

Article history:
Received 22 December 2010
Received in revised form 4 July 2011
Accepted 25 June 2012
Available online 8 July 2012

The demands in the software industry of estimating development effort in the early phases of
development are met by measuring software size from user requirements. A large number of
companies have adapted themselves with Agile processes, which, although, promise rapid
software development, pose a huge burden on the development teams for continual decision
making and expert judgement, when estimating the size of the software components to be
developed at each iteration. COSMIC, on the other hand, is an ISO/IEC international standard
that presents an objective method of measuring the functional size of the software from user
requirements. However, its measurement process is not compatible with Agile processes, as
COSMIC requires user requirements to be formalised and decomposed at a level of granularity
where external interactions with the system are visible to the human measurer. This
time-consuming task is avoided by agile processes, leaving it with the only option of quick
subjective judgement by human measurers for size measurement that often tends to be
erroneous. In this article, we address these issues by presenting an approach to approximate
COSMIC functional size from informally written textual requirements demonstrating its
applicability in popular agile processes. We also discuss the results of a preliminary
experiment studying the feasibility of automating our approach using supervised text mining.

© 2012 Elsevier B.V. All rights reserved.

Keywords:
Software requirements
Functional size measurement
Text mining
Natural language processing
Agile development processes

1. Introduction

The agile development process breaks down the software development lifecycle into a number of consecutive iterations that
increases communication and collaboration among stakeholders. This type of process focuses on the rapid production of
functioning software components along with providing the flexibility to adapt to emerging business realities [1]. In practice, agile
processes have been extended to offer more techniques, e.g. describing the requirements with user stories [2]. Instead of a
manager estimating developmental time and effort and assigning tasks based on conjecture, teammembers in agile processes use
effort and degree of difficulty in terms of points to estimate the size of their own work, often with biased judgment [3]. Hence, an
objective measurement of software size is crucial in the planning and management of agile projects.

We know that effort is a function of size [4], and a precise estimation of software size right from the start of a project life cycle
gives the project manager confidence about future courses of action, since many of the decisions made during development
depend on the initial estimations. Better estimation of size and effort allows managers to determine the comparative cost of a
project, improve process monitoring, and negotiate contracts from a position of knowledge.

Data & Knowledge Engineering 85 (2013) 2–14

⁎ Corresponding author.
E-mail addresses: h_hussa@cse.concordia.ca (I. Hussain), kosseim@cse.concordia.ca (L. Kosseim), ormandj@cse.concordia.ca (O. Ormandjieva).

URLs: http://www.linkedin.com/in/ishrar (I. Hussain), http://users.encs.concordia.ca/~kosseim (L. Kosseim), http://users.encs.concordia.ca/~ormandj
(O. Ormandjieva).

0169-023X/$ – see front matter © 2012 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2012.06.005

Contents lists available at SciVerse ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak

http://dx.doi.org/10.1016/j.datak.2012.06.005
mailto:h_hussa@cse.concordia.ca
mailto:kosseim@cse.concordia.ca
mailto:ormandj@cse.concordia.ca
http://www.linkedin.com/in/ishrar
http://users.encs.concordia.ca/~kosseim
http://users.encs.concordia.ca/~ormandj
http://dx.doi.org/10.1016/j.datak.2012.06.005
http://www.sciencedirect.com/science/journal/0169023X
http://crossmark.crossref.org/dialog/?doi=10.1016/j.datak.2012.06.005&domain=pdf


The above has led the industry to formulate several methods for functional size measurement (FSM) of software. In 1979,
Allan Albrecht first proposed FSM in his work on function point analysis (FPA) [5], where he named the unit of functional size as
“Function Point (FP)”. His idea of effort estimation was then validated by many studies, like [6,7], and, thus, measuring the
functional size of the software became an integral part of effort estimation. Over the years, many standards have been developed
by different organisations on FSM methods, following the concepts presented in Albrecht's FPA method. Four of these standards
have been accepted as ISO standards: they are IFPUG [8], Mark II [9], NESMA [10] and COSMIC [11].

In recent years, many studies (e.g. [12–14]) have attempted to automate the process of different functional size measurement
methods, but, to our knowledge, none has addressed this problem by taking the textual requirements as input to start the
automatic measurement process. In addition, all these work depended on extracting manually the conceptual modeling artifacts
first from the textual requirements, so that a precise functional size measurement can be performed. On the other hand, the work
documented in this paper aims to develop a tool that would automatically perform a quicker approximation of COSMIC size
without requiring the formalisation of the requirements. This is in response to the high industrial demands of performing size
estimation during agile development processes, where formalisation of requirements are regarded as costly manipulation, and,
thus, ignored during size estimation. Our methodology extends the idea presented in the Estimation by Analogy approach [15]
and the Easy and Quick (E&Q) measurement approach, that was originated in the IFPUG standard [16]. The applicability of this
approach in COSMIC was manually demonstrated by [17].

2. Background

2.1. COSMIC

For the purpose of this research, we have chosen to use the COSMIC FSM method developed by the Common Software
Measurement International Consortium (COSMIC) and now adopted as an international standard [11]. We chose this method in
particular, because it conforms to all ISO requirements [18] for FSM, focuses on the “user view” of functional requirements, and is
applicable throughout the agile development life cycle. Its potential for being applied accurately in the requirements specification
phase compared to the other FSM methods is demonstrated by the study of [19]. Also, COSMIC does not rely on subjective
decisions by the functional size measurer during the measurement process [11]. Thus, its measurements, taken from well-
specified requirements, tend to be same among multiple measurers. This is particularly important for validating the performance
of our automatic size measurements.

In COSMIC, size is measured in terms of the number of Data-movements, which accounts for the movement of one or more
data-attributes belonging to a single Data-group. A data-group is an aggregated set of data-attributes. A Functional Process, in
COSMIC, is an independently executable set of data-movements that is triggered by one or more triggering events. A triggering
event is initiated by an actor (a functional user or an external component) that occurs outside the boundary of the software to be
measured. Thus, a functional process holds the similar scope of a use case scenario, starting with the triggering event of a
user-request and ending with the completion of the scenario. Fig. 1 illustrates the generic flow of data-groups from a functional
perspective, presented in the COSMIC standard [11].

As shown in Fig. 1, the data-movements can be of four types: Entry, Exit, Read andWrite. An Entry moves a data-group from a
user across the boundary into the functional process, while an Exit moves a data group from a functional process across the

Functional Users
(and/or External Components)

Boundary

Persistent Storage

Entry
1 Data Group

Read
1 Data Group

Exit
1 Data Group

Write
1 Data Group

Functional
Process

Fig. 1. Generic flow of data-groups in COSMIC [11].

3I. Hussain et al. / Data & Knowledge Engineering 85 (2013) 2–14



Download English Version:

https://daneshyari.com/en/article/378806

Download Persian Version:

https://daneshyari.com/article/378806

Daneshyari.com

https://daneshyari.com/en/article/378806
https://daneshyari.com/article/378806
https://daneshyari.com

