
Subspace top-k query processing using the hybrid-layer index with a
tight bound

Jun-Seok Heo a, Junghoo Cho b, Kyu-Young Whang a,⁎
a Korea Advanced Institute of Science and Technology (KAIST), Republic of Korea
b University of California, LA, USA

a r t i c l e i n f o a b s t r a c t

Article history:
Received 28 April 2011
Received in revised form 10 July 2012
Accepted 14 July 2012
Available online 11 September 2012

In this paper, we propose the Hybrid-Layer Index (simply, the HL-index) that is designed to
answer top-k queries efficiently when the queries are expressed on any arbitrary subset of
attributes in the database. Compared to existing approaches, the HL-index significantly
reduces the number of tuples accessed during query processing by pruning unnecessary tuples
based on two criteria, i.e., it filters out tuples both (1) globally based on the combination of all
attribute values of the tuples like in the layer-based approach (simply, layer-level filtering) and
(2) based on individual attribute values specifically used for ranking the tuples like in the
list-based approach (simply, list-level filtering). Specifically, the HL-index exploits the synergic
effect of integrating the layer-level filtering method and the list-level filtering method.
Through an in-depth analysis of the interaction of the two filtering methods, we derive a tight
bound that reduces the number of tuples retrieved during query processing while guaranteeing
the correct query results. We propose the HL-index construction and retrieval algorithms and
formally prove their correctness. Finally, we present the experimental results on synthetic and
real datasets. Our experiments demonstrate that the query performance of the HL Index
significantly outperforms other state-of-the-art indexes in most scenarios.

© 2012 Published by Elsevier B.V.

Keywords:
Access methods
Query
Top-k queries
Subspaces
Linear scoring functions
Layering
Listing
Hybrid

1. Introduction

Computing top-k answers quickly is becoming ever more important as the size of databases grows and as more users access
data through interactive interfaces [1]. When a database is large, it may take minutes (if not hours) to compute the complete
answer to a query if the query matchesmillions of the tuples in the database. Most users, however, are interested in looking at just
the top few results (ranked by a small set of attribute values that the users are interested in) and they want to see the results
immediately after they issue the query.

As an example, consider a database of digital cameras, which has many attributes such as price, manufacturer, model number,
weight, size, pixel count, sensor size, etc. Among these attributes, a particular user is likely to be interested in a small subset when
they make a decision to purchase. For example, a user who wants to buy a cheap compact digital camera will be mainly interested
in the price and the weight and may issue a query like

SELECT * FROM Cameras ORDER BY 0.5*price+0.5*weight ASC LIMIT k.

Another user who primarily cares about the quality of the pictures will be more interested in the pixel count and sensor size and
issue a query like

SELECT * FROM Cameras ORDER BY 0.4*pixelCount+0.6*sensorSize DESC LIMIT k.

Data & Knowledge Engineering 83 (2013) 1–19

⁎ Corresponding author.
E-mail addresses: jsheo@mozart.kaist.ac.kr (J.-S. Heo), cho@cs.ucla.edu (J. Cho), kywhang@mozart.kaist.ac.kr (K.-Y. Whang).

0169-023X/$ – see front matter © 2012 Published by Elsevier B.V.
http://dx.doi.org/10.1016/j.datak.2012.07.001

Contents lists available at SciVerse ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak

http://dx.doi.org/10.1016/j.datak.2012.07.001
mailto:jsheo@mozart.kaist.ac.kr
mailto:cho@cs.ucla.edu
mailto:kywhang@mozart.kaist.ac.kr
http://dx.doi.org/10.1016/j.datak.2012.07.001
http://www.sciencedirect.com/science/journal/0169023X


To handle scenarios like the above, we propose the Hybrid-Layer Index (simply, the HL-index) that is designed to answer top-k
queries on an arbitrary subset of the attributes efficiently. There exist a number of approaches for efficient computation of top-k
answers. For example, in their seminal work, Fagin et al. [2,3] designed a series of algorithms that consider a tuple as a potential
top-k answer only if the tuple is ranked high in at least one of the attributes used for ranking. We refer to this approach as the
list-based approach because the algorithms require maintaining one sorted list per each attribute. While this approach shows
significant improvement compared to earlier work, it often considers an unnecessarily large number of tuples. For instance, when
a tuple is ranked high in one attribute but low in all others, the tuple is likely to be ranked low in the final answer and can
potentially be ignored, but the list-based approach has to consider it because of its high rank in that one attribute. As the size of
the database grows, this becomes an acute problem because there are likely to be more tuples that are ranked high in one
attribute but low overall.

To avoid this pitfall, Chang et al. [4] proposed an algorithm that constructs a global index based on the combination of all
attribute values and uses this index for top-k answer computation. We refer to this approach as the layer-based approach because
it builds an index that partitions the tuples into multiple layers. The layer-based approach avoids the pitfall of the list-based
algorithms, but it also has the opposite problem. Because the index is constructed on all attributes, it does not perform well when
the query ranks tuples by a small subset of the attributes. A tuple may be ranked high globally on many attributes, but it may be
ranked low for a particular subset of attributes used for a query.

One simple way to address the drawback of the layer-based approach is to build one dedicated index per subsets of attributes
and use the appropriate index for a query as in [5,6]. We refer to these approaches as the view-based approach. Clearly, view-based
approaches lead to high query performance if the “closest” answers to the query issued by a user has been precomputed.
Otherwise, they lead to low query performance. They can improve query performance by increasing the number of indexes, but
the space overhead increases in proportion to the number of indexes [7].

Our proposed HL-index tries to avoid all pitfalls of the existing approaches in the following ways. By careful integration of the
list-based and the layer-based approaches, it is able to filter out a tuple both by the global combination of all of its attribute values
(like in the layer-based approach) and by the individual consideration of the particular attribute values used for ranking (like in
the list-based approach). In addition, one HL-index can handle any queries on an arbitrary subset of the attributes avoiding the
space overhead of the view-based approach. More precisely, we make the following contributions in this paper.

• We propose the HL-index that can be used for answering top-k queries on an arbitrary subset of attributes. The HL-index can be
built for either (1) linear scoring functions (including monotone and non-monotone linear functions) or (2) monotone scoring
functions (including linear and non-linear monotone functions). The HL-index has significantly more pruning power than
existing approaches and does not require a separate index customized for each class of queries on different subsets of attributes.

• We present the algorithms for processing top-k queries using the HL-index. Through an in-depth analysis of the interaction of
the list-based and layer-based approaches, we derive a tight bound to minimize the number of tuples that are retrieved during
query processing and to guarantee the correctness of the computed results. We also provide formal proofs of correctness of
those algorithms.

• We conduct extensive experiments comparing the performance of the HL-index with those of existing approaches on both
synthetic and real data. The HL-index can exploit the synergic effect of the list-based approach and the layer-based approach by
meticulous integration of the two approaches. As a result, the HL-index shows better performance over existing approaches for
practically all settings in our experiments. In particular, our experiments show that the HL-index performs particularly well
when the size of the database is large, leading to a factor of three or more improvement for a database of million tuples in our
experiments.

The rest of the paper is organized as follows: We first go over related work in Section 2 and we formally define the top-k
queries that we handle in Section 3. Then, in Section 4, we describe the HL-index construction algorithm and, in Section 5, explain
the top-k query processing algorithm using the HL-index and prove its correctness. In Section 6 we present our experiments that
compare the performance of the HL-index to existing approaches. We conclude the paper in Section 7.

2. Related work

There have been a number of methods proposed to answer top-k queries by accessing only a subset of the database. We
categorize the existing methods into three classes: the list-based approach, the layer-based approach, and the view-based approach.
We briefly review each of these approaches in this section.

2.1. Layer-based approach

The layer-based approach constructs a global index based on the combination of all attribute values of each tuple. Within the
index, tuples are partitioned into multiple layers, where the ith layer contains the tuples that can potentially be the top-i answer.
Therefore, the top-k answers can be computed by reading at most k layers. ONION [4], PL-index [8], and AppRI [9] are well-known
methods of this approach.

ONION [4] builds the index by making layers with the vertices (or the extreme points [10]) of the convex hulls [11] over the set
of tuples represented as point objects in the multi-dimensional space. That is, it makes the first layer with the convex hull vertices
over the entire set of tuples, and then, makes the second layer with the convex hull vertices over the set of remaining tuples, and

2 J.-S. Heo et al. / Data & Knowledge Engineering 83 (2013) 1–19



Download English Version:

https://daneshyari.com/en/article/378811

Download Persian Version:

https://daneshyari.com/article/378811

Daneshyari.com

https://daneshyari.com/en/article/378811
https://daneshyari.com/article/378811
https://daneshyari.com

