
Formal enforcement and management of obligation policies

Yehia Elrakaiby a,⁎, Frédéric Cuppens b, Nora Cuppens-Boulahia b

a University of Luxembourg, 6 rue Coudenhove-Kalegri, L-1359, Luxembourg
b Télécom Bretagne, 2 rue de la Chataigneriae, 35512 Cesson Sévigné, France

a r t i c l e i n f o a b s t r a c t

Article history:
Received 24 August 2010
Received in revised form 5 September 2011
Accepted 6 September 2011
Available online 16 September 2011

Obligations are generally actions that users are required to take and are essential for the expres-
sion of a large number of requirements. For instance, obligation actions may represent prerequi-
sites to gain some privilege (pre obligations), to satisfy some ongoing or post requirement for
resource usage (ongoing and post obligations), or to adhere to some privacy or availability policy.
Obligations may also define states of affairswhich should be maintained. An example of such ob-
ligations is the obligation “doctors should remain alert while in the operating room”. In this paper,
we introduce a formal framework for the management and enforcement of obligation policies.
The framework is formalized using concepts from action specification languages and the Event
Condition Action paradigm of active databases. Therefore, our framework allows reasoning
about change in the state of obligations and, at the same time, provides declarative formal seman-
tics for their enforcement. In this framework, we support many types of obligations and show
how to manage obligation activation, fulfillment and violation.

© 2011 Elsevier B.V. All rights reserved.

Keywords:
Security
Obligations
Obligation policies
Obligation monitoring
Policy management
Policy languages
Conceptual modeling

1. Introduction

Traditionally, security policies have mainly focused on the specification and management of access control requirements
expressed in the form of permissions and prohibitions. However, the application of security policies in different domains has
shown the relevance of obligations to the expression of many requirements such as usage control and data protection [1,2], pri-
vacy [3,4], and availability [5].

Until recently, obligation requirements were hard-coded in applications. This leads to applications which are inflexible be-
cause it becomes difficult to update the application behavior when requirements change. For this reason, several obligation policy
languages and frameworks have been introduced [6,2,7–11]. The use of a policy-based approach allows the expression of require-
ments using a high-level language, which simplifies policy interpretation and representation. It also enables administrators to dy-
namically update the system behavior whenever there is a change in the requirements by modifying rules specified in the policy.
Moreover, the formalization of the policy language allows the formal analysis of policy and the proof of its properties. This reduces
the risk of policy misspecification.

Obligation policy languages can be broadly classified into two categories. On one hand, there are policy enforcement languages
such as [9]. These languages generally simplify policy specification and interpretation. However, they lack the formal semantics
needed to allow formal policy analysis and the proof of policy properties. On the other hand, there are policy analysis languages
such as [12,13]. These languages allow formal policy analysis and the expression of a large variety of obligations. However,
these languages do not provide the operational semantics needed to dynamically enforce and manage obligations in a policy-
managed system. In this paper, we introduce a policy language which aims at combining the advantages of both policy enforce-
ment and analysis languages. We make a more thorough and detailed overview of existing policy languages in Section 12.

Data & Knowledge Engineering 71 (2012) 127–147

⁎ Corresponding author at: Interdisciplinary Centre for Security Reliability and Trust (SnT), University of Luxembourg, 6 rue Coudenhove-Kalegri, L-1359,
Luxembourg. Tel.: +352 4666445872; fax: +352 4666445669.

E-mail address: yehia.elrakaiby@uni.lu (Y. Elrakaiby).

0169-023X/$ – see front matter © 2011 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2011.09.001

Contents lists available at SciVerse ScienceDirect

Data & Knowledge Engineering

j ourna l homepage: www.e lsev ie r .com/ locate /datak

http://dx.doi.org/10.1016/j.datak.2011.09.001
mailto:yehia.elrakaiby@uni.lu
http://dx.doi.org/10.1016/j.datak.2011.09.001
http://www.sciencedirect.com/science/journal/0169023X


There are two main types of obligations, namely system and user obligations. System obligations denote actions which should be
immediately taken when some conditions become true. An example of a system obligation is “when an attack is detected on some
server, the source address of the attacker should be blocked”. System obligations are generally enforced bymechanisms implemented
in the system. On the other hand, user obligations are actions that subjects are required to take in the future. Since subjects cannot be
forced to take actions, user obligations are unenforceable and should bemonitored for violation/fulfillment. A user obligation also has a
deadline that specifies when it is violated. In particular, an obligation is violatedwhen its deadline is detected if the obligation has not
been fulfilled. In the following, we mainly focus on user-obligations and the term obligation is used to refer to user obligations. One
may however consider that a systemobligation is a form of a user obligationwhere the obligation subject is the systemandwhere the
obligation deadline is detected if the obligation is not immediately enforced after its activation.

In order to formalize an obligation model, we analyze the basic elements of an obligation. An obligation is associated with an
event after which the obligation becomes effective. This event may be a temporal event such as the event “at the first of every
month” or an action-based event such as the event “when a file is downloaded”. Obligations should also be associated with vio-
lation events (like deadlines). Without violation events, obligations are void [14], i.e. without any force. Events characterizing ob-
ligation violation may be action-based or temporal events similarly to obligation activation. They may also correspond to relative
temporal deadlines. Relative temporal deadlines enable the specification that an obligation is violated if it is not fulfilled within
some determined period of time after its activation. For instance, an obligation may specify that doctors should examine new pa-
tients assigned to them within 6 h.

When obligations are violated, it is often necessary to activate sanction/reaction policies. Sanction/reaction policies specify
new prohibitions/obligations which should be activated to compensate the violated obligations. For instance, when the previous
obligation is violated, a sanction policy may require that the doctor of the violated obligation submits a report to his/her depart-
ment head. A reaction policy may, on the other hand, specify an obligation which requires that another doctor examines the unex-
amined patient. Finally, some obligations may persist after they are violated. For instance, an obligation to pay his/her taxes after
some deadline may remain required even if it is violated. On the other hand, other obligations such as the obligation to submit
paper reviews before the conference notification deadline may become unnecessary after their violation.

Obligations may also require that some state of affairs be maintained as opposed to taking some action. For instance, consider
the obligation “doctors should remain alert while in the operating room”. This obligation may imply, for instance, that no signs of
drowsiness/fatigue should appear on doctors in the operating room. We distinguish these obligations from regular obligations re-
quiring action by calling the latter fulfillment obligations and the former continuous obligations. We consider continuous obliga-
tions different from negative obligations (which are logically equivalent to prohibitions) since it does not seem intuitive to view
the requirement above as a prohibition to show signs of fatigue. In other words, there does not seem to exist a physical action
which a doctor may be prohibited to maintain the desired state of affairs. At the same time, one motivation behind including con-
tinuous obligations in the policy is to enable administrators to specify the necessary sanction/reaction policies which should apply
when these requirements are violated. For instance, one may imagine a sanction in the form of a prohibition for the doctor to per-
form operations and a reaction policy requiring another doctor to replace the sanctioned doctor.

As illustrated in the previous examples, an obligation cannot be fulfilled/violated unless it was activated in a previous state.
This ordering between the obligation activation and its violation/fulfillment implies that obligation models should consider dif-
ferent states for obligations. Therefore, we introduce in this paper a state-based obligation model. The model identifies the states
which obligations may assume and defines when state transitions occur. The model is formalized using concepts from action
specification languages [15]. Consequently, the model enables the reasoning about the evolution of obligations when change in
the system state is detected. Our formalization language also integrates the Event Condition Action (ECA) rules [16] largely stud-
ied in the domain of active databases. ECA rules model reactive application behavior. Therefore, they enable the clarification of
policy-enforcement and the study of several important related issues such as decidability and termination.

In this paper, we study and formalize the management of contextual obligation policies. We summarize the main contribu-
tions of this paper as follows:

– The introduction of an obligation language that is at the same time expressive to enable the specification of large number of
practical real life requirements and simple to allow non-specialists to understand it and use it. Violation events in the language
are not limited to simple temporal deadlines and event-based deadlines are supported.

– The association of the language with an obligation state-based model. The model clarifies the semantics of obligations by iden-
tifying the different obligation states and state transitions. The model also recognizes that some obligations remain required
(persist) after their violation. Therefore, it enables the specification of many real-life obligation requirements.

– The formalization of our obligation model using the concepts of action specification languages and the Event Condition Action
paradigm of active databases. Therefore, our framework enables the formal reasoning about the evolution of the state of ob-
ligations and provides operational semantics for their enforcement.

– The support of sanction and recompense policies necessary to compensate violated obligations and/or to encourage subjects to
fulfill their obligations.

– The introduction and formalization of continuous obligations. Continuous obligations are generally unsupported in other ob-
ligation frameworks. Our obligation language also distinguishes between persistent and non-persistent obligations. These two
points arguably add to the expressiveness of our obligation language in comparison with other obligation languages.

This paper is organized as follows. Section 2 presents some obligation examples which we discuss and analyze. Section 3 pre-
sents state description. Section 4 presents our context and obligation policy languages. In Section 5, we introduce our obligation

128 Y. Elrakaiby et al. / Data & Knowledge Engineering 71 (2012) 127–147



Download English Version:

https://daneshyari.com/en/article/378831

Download Persian Version:

https://daneshyari.com/article/378831

Daneshyari.com

https://daneshyari.com/en/article/378831
https://daneshyari.com/article/378831
https://daneshyari.com

