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In this paper, we present an algorithm for mining frequent itemsets in a stream of transactions
within a limited time horizon. In contrast to other approaches that are presented in the
literature, the proposed algorithm makes use of a test window that can discard non-frequent
itemsets from a set of candidates. The efficiency of this approach relies on the property that the
higher the support threshold is, the smaller the test window is. In addition to considering a
sharp horizon, we consider a smooth window. Indeed, in many applications that are of
practical interest, not all of the time slots have the same relevance, e.g., more recent slots can
be more interesting than older slots. Smoothness can be determined in both qualitative and
quantitative terms. A comparison to other algorithms is conducted. The experimental results
prove that the proposed solution is faster than other approaches but has a slightly higher cost
in terms of memory.

© 2014 Elsevier B.V. All rights reserved.

Keywords:
Data mining
Mining methods and algorithms
Frequent itemsets

1. Introduction

When we search for interesting patterns in sets, sequences and relations of data, the identification of target itemsets, i.e.,
subsets of occurring items, represents the starting point of most of the analyses. As mined itemsets can reveal interesting and
previously unknown facts [1–8], the learning of recurrent patterns in data streams is challenging because of the dynamic nature of
the problem and the additional real-time constraints.

Data streams occur in many examples of practical interest, such as in sensor data generated by sensor networks, online
transactions recorded by the retail chains, grocery sales data, visited pages and click-streams in web applications, calls and instant
messages that are placed in telecommunication networks, daily weather/traffic records, stock market data, or performance
measurements in network traffic management and monitoring. The mining of flowing data offers new challenges, because data
streams are continuous and unbound, they require to be processed considering real-time constraints and data distributions which
change over time. In the data streams, some of the patterns become more frequent, while other patterns tend to disappear. As
motivating examples we outline the following two cases: the visited web pages and the rainfall data. In the first case, we are
interested to analyze the web traffic generated by single visits in order to identify which pages are mostly visited over time. In this
case, items are web pages or site sections, and transactions collect which pages/sections are visited by a unique visitor. Records
have different sizes. Frequent itemsets represent the groups of pages/sections that are mostly visited within a limited time
horizon. In the second case, we aim to analyze how rainfalls are changing by time over an area of interest. Here, items are the
rainfall levels recorded over the time at different locations within a geographic area. Records have the same size. Frequent
itemsets relate to groups of rainfall levels that are mostly occurring within a time period.

Both cases will be used as domains of application as part of our experimentation.
The time horizon provides a frame of interest in which to search for the frequent itemsets. The contribution of this paper is in

presenting theWindow Itemset Shift (WIS) algorithm, which provides an efficient solution to the search for frequent itemsets in a
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stream of transactions when a time horizon is given, specifically, when this horizon is smoothly defined by fuzzy sets or
determined according to stream characteristics.

The simple iterated structure of a standard algorithm is inefficient, because the search begins from scratch at each iteration
and does not account for any memory of the transaction stream. This case is the Apriori [1] algorithm, when it is re-iterated as
new transactions are entering the frame of interest. Other approaches have been proposed in the literature. Although the
literature contains some optimizations to Apriori, their logic is based on re-iterating the algorithm at each step.

However, frequent itemsets must occur in a restricted portion of time. If not, the support does not reach the threshold. With
respect to this property, an initial idea is to consider the minimal window that makes it possible to discard those itemsets that are
certainly not frequent. In addition, because most of the itemsets are held within the time frame of interest, a further enhancement
is to maintain a memory of itemset candidates that might become frequent and to update this list as new transactions are
entering and old transactions are exiting the time frame. As a consequence, the number of candidates to consider at each step is
smaller than those processed by other approaches. Finally, the support counting is limited to the test window and it does not
require a pass through the dataset. This approach, as shown by experimentation on datasets with different characteristics, allows
the algorithm to perform better than the other algorithms proposed in the literature.

Because the time slots might have a different relevance within the time horizon considered, we can assign a degree of interest
to each of them. This approximation leads to “fuzzify” the algorithm in such a way that the support count is affected by the
different relevances assumed by the transactions as they move along the time frame. Although this feature does not provide any
further enhancement to the performances, it expands the meaningfulness of the algorithm, enabling a higher expressivity. In
addition, as explained in Section 4, this feature allows us to address with the unbounded windows with a limited capacity and
improves the algorithm's scalability.

This paper is organized as follows: Section 2 introduces the definitions and the properties of frequent itemsets for the
non-familiar reader, Section 3 provides a brief overview of the related research, Section 4 introduces the concepts that underlie
the WIS algorithm, Section 5 describes the algorithm's logic and architecture, Section 6 compares WIS to other algorithms by
experimentation on datasets that have different characteristics, and Section 7 outlines the conclusions.

2. Preliminaries

A group or set of items entailed by database records, e.g., the set of items that a customer collects in a market basket, is referred
to as an itemset. More formally, let X = {i1,i2,…,im} be a set of m distinct literals called items. Let the dataset D be a collection of
transactions over X. Each transaction (or record) r∈D contains a subset of items, i.e., r ≡ {ii,ij,…,ik}⊆X. The number of items in r
provides its length. The transactions in D can entail different lengths. A subset of items I⊆X is called an itemset.

The number of times that an itemset I occurs in the transactions is the support count of I, which is denoted as supp(I). Frequent
itemsets are defined with respect to the support threshold S; as a result an itemset I is frequent if supp(I) ≥ S.

The itemset support count is related to the support count of its subsets and supersets. In fact, given two itemsets I and J such
that I⊂J, the number of times that I occurs is at least the number of occurrences of J because the former is part of the latter.
Therefore,

supp Ið Þ≥supp Jð Þ; ∀I⊂ J⊆X ð1Þ

In addition, it is useful to further classify an itemset X as being maximal frequent if X is frequent, but any Y⊃X is not [9].
The problem of counting the number of distinct itemsets in a dataset, given an arbitrary support threshold, is NP-complete,

and the problem of mining itemsets is NP-hard [10]. If |X| is the cardinality of X, then the number of possible distinct itemsets is 2|X|.
To reduce the combinatorial search space, most of the algorithms exploit the following two properties:

- Downward closure: all of the subsets of a frequent itemset are frequent1

- Anti-monotonocity: supersets of an infrequent itemset must be infrequent, too.

3. Related research

3.1. Mining of frequent itemsets

Traditionally, itemset mining is associated with the discovery of association rules [2,11] because they provide a subset of
patterns within which to search. The problem of mining association rules in large databases can be divided into two subproblems:
(i) seeking frequent itemsets; and (ii) discovering association rules among the found itemsets.

The first and most noticeable algorithm for mining frequent itemsets is known as Apriori, which was proposed independently
by Agrawal and Srikant [3] and Mannila, Toivonen and Verkamo [12] and was later joined in [4]. Apriori is a levelwise,
breadth-first, bottom-up algorithm, as outlined by Algorithm 1.

1 The name of the property comes from the fact that the set of frequent itemsets is closed with respect to set inclusion.
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