Data & Knowledge Engineering 69 (2010) 545-572

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier.com/locate/datak \

The consistency extractor system: Answer set programs for consistent
query answering in databases

Monica Caniupan®*, Leopoldo Bertossi®

2 Universidad del Bio-Bio, Depto. Sistemas de Informacién, Concepcion, Chile
b Carleton University, School of Computer Science, Ottawa, Canada

ARTICLE INFO ABSTRACT
Article history: We describe the Consistency Extractor System (Cons Ex) that computes consistent answers to
Received 9 March 2009 Datalog queries with negation posed to relational databases that may be inconsistent with

Received in revised form 24 January 2010
Accepted 27 January 2010
Available online 4 February 2010

respect to certain integrity constraints. In order to solve this task, Cons Ex uses answers set
programming. More precisely, Cons Ex uses disjunctive logic programs with stable models
semantics to specify and reason with the repairs, i.e. with the consistent virtual instances
that minimally depart from the original database. The consistent information is invariant

’SZ{‘:’I;’;S:; under all repairs. Cons Ex achieves efficient query evaluation by implementing magic sets
Integrity constraints techniques. We describe the general methodology, its optimizations for query answering,
Inconsistency and the architecture of the system. We also present encouraging experimental results.

Answer set programs © 2010 Elsevier B.V. All rights reserved.

1. Introduction

Integrity constraints (ICs) capture the semantics of data with respect to the external reality that the database is expected
to model. Databases should satisfy their ICs, but in practice, databases may become inconsistent with respect to them [10].
Nevertheless, in most cases only a small portion of the data is inconsistent (i.e. participates in inconsistency with respect to
the ICs). In consequence, an inconsistent database can still give us useful and semantically correct information. The process
of characterizing and obtaining consistent answers to queries is called Consistent Query Answering (CQA) [12].

Consistent query answering makes sense if, to make thing worse, it becomes impossible, undesirable or too difficult to
restore the consistency of the database by applying some form of materialized data cleaning. Conventional data cleaning
might be a non-deterministic and expensive process, that also leads to a loss of potentially useful information. In some cases,
we might actually have no permission to modify data or a clear way about how to proceed in this direction. This is the case,
for example, when autonomous and independent data sources are virtually integrated.

Enforcing consistency at query time is an alternative to enforcing consistency at the instance level. This idea is applicable
in, among other situations, (a) virtual data integration, (b) in the case of a single database on which, for better performance
purposes, some ICs are not enforced, (c) in the materialization of a database whose content is obtained from other sources. In
the latter case, the ETL process (Extract, Transform, and Load) can be seen, modeled and implemented as the materialization
of a process of CQA.

Before computing consistent answers to queries, they have to be formally characterized, in precise logical terms. This was
first done in [4]: Consistent answers to a query are invariant under all the forms of restoring consistency by minimal changes
on the database. The alternative consistent versions of the original instance are called repairs. So, consistent answers are those
that can be obtained as usual answers from every repair. The notion of consistent answer is related in spirit to the notion of

* Corresponding author.
E-mail addresses: mcaniupa@ubiobio.cl (M. Caniupdn), bertossi@scs.carleton.ca (L. Bertossi).

0169-023X/$ - see front matter © 2010 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2010.01.005


http://dx.doi.org/10.1016/j.datak.2010.01.005
mailto:mcaniupa@ubiobio.cl
mailto:bertossi@scs.carleton.ca
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak

546 M. Caniupdn, L. Bertossi/Data & Knowledge Engineering 69 (2010) 545-572

certain answer as found, for example, in virtual data integration [1]: Certain answers are those that are true of all the possible
legal instances for the integration system.

More precisely, given a relational database instance D and a set IC of ICs, a (minimal) repair [4] is an instance D’ of the
same schema, that satisfies IC, and differs from D by a minimal set of whole database tuples under set inclusion. Repairs
do not have to be materialized; actually there may be too many of them [10]. In principle, they are virtual instances that
are used to give a model-theoretic definition of consistent answer. Mechanism for CQA can and have to be assessed against
this semantic definition.

Example 1. Consider the database schema Student(id, name). The functional dependency (FD) id — name establishes that
each student identifier is associated with a unique name value. The first two tuples of the following database instance D, that
can be the result of the integration of two data sources, violate the FD:

Student

id name
1 smith
1 peter

2 jones

Consistency can be minimally restored by deleting either tuple Student(1,smith) or tuple Student(1, peter). If we delete
both tuples, the resulting database is not a repair since it does not satisfy the minimality requirement. Therefore, there
are two database repairs:

Student
id name id name
1 smith 1 peter
jones 2 jones

We can see that certain information persists in the repairs, e.g. tuple Student(2, jones) is in both of them, reflecting the fact
that it does not participate in the violation of the FD. On the other hand, the “inconsistent tuples” Student(1,smith) and
Student(1, peter) do not persist in all the repairs. If we want to know the id of student jones, we can pose the query
Student(x,jones). The answer to this query is (2) in both repairs, therefore the consistent answer is (2).

Moreover, for the boolean disjunctive query Student(1, smith) v Student(1, peter), the consistent answer is yes, since each
repair satisfies one of the disjuncts in the query. Notice that if we had simultaneously deleted all the tuples participating in
an inconsistency, we would have lost this kind of information.

Already in [4] some computational mechanisms were presented that do not use or compute the repairs, but pose a new,
rewritten query to the given inconsistent database. The answers to the new query are the consistent answers to the original
query. Cf. [12] for a survey containing more recent results of this kind.

The algorithm for CQA proposed in [4] implemented and slightly extended in [25] is applicable to limited classes of que-
ries and ICs, e.g. projection-free conjunctive queries, functional dependencies, full inclusion dependencies. In these cases, the
first-order (FO) query can be rewritten into a new FO query that posed and answered as usual to given instance, obtains the
consistent answers to the original query. Other FO query rewriting methods for CQA were presented in [27,39,46]. However,
they are still limited in their applicability, which is due to the intrinsic higher data complexity of CQA. Cf. [10,12] for surveys
in this direction, and [60] for more recent results about non-FO rewritability of CQA. The on-the-fly, at query time, resolution
of inconsistencies is what makes the FO rewriting for CQA difficult or impossible. This is in contrast to, for example, querying
databases through DL-Lite ontologies by FO query rewriting [20], where the ontology basically extends the underlying data-
base without being in logical conflict with it.

As a consequence, languages for query rewriting than are more expressive than FO Logic became necessary. Actually, they
first and naturally emerged when logic programs were used to specify the repairs, with the idea of query this compact spec-
ification of repairs in order to obtain the consistent answers. In several papers [5,8,9,15,16,32,43], database repairs were
specified as the stable models of disjunctive logic programs with stable model semantics [40] (aka. answer set programs).
The logic programs that specify the repairs are called repair programs.

The logic programs introduced in [16] are most general and take into consideration the possible occurrences of null values
in the databases. Furthermore, they capture the use of null values for restoring consistency with respect to referential ICs
(RICs). Actually, in [9,16] it was shown that there is a one-to-one correspondence between the stable models of the repair
program and the repairs with respect to RIC-acyclic sets of ICs, i.e. sets of constraints that do not present cycles involving
RICs (cf. Section 2).



Download English Version:

https://daneshyari.com/en/article/378942

Download Persian Version:

https://daneshyari.com/article/378942

Daneshyari.com


https://daneshyari.com/en/article/378942
https://daneshyari.com/article/378942
https://daneshyari.com

