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a b s t r a c t

In solid-state fermentation systems, the growth of aerial hyphae into the interparticle spaces increases
the pressure drop through forcefully aerated beds. Aerial hyphae can also bind particles into agglom-
erates, restricting the transfer of O2 to the particle surfaces. Despite these important effects, to date
relatively little effort has been made to understand the growth patterns of these hyphae. In the current
work we present a discrete lattice-based model that can be used to simulate the growth of the aerial
hyphae of filamentous fungi. In the model, the elongation of hyphae involves the successive addition
of 10 �m cubes, with random numbers being used to choose the direction of growth. The model was
able to describe profiles available in the literature for the density of the aerial hyphae, as a function of
height above the surface, for a situation in which the filamentous fungus Rhizopus oligosporus was grown
on potato dextrose agar. The model can be modified to describe various different situations involving
the growth of filamentous fungi in solid-state fermentation systems, such as the growth of penetrative
hyphae and the growth of hyphae within the wet mycelial layer that often forms at the surfaces of par-
ticles. It therefore represents a useful tool for investigating phenomena that occur at the micro-scale in
solid-state fermentation systems.

© 2011 Elsevier B.V. All rights reserved.

1. Introduction

Aerial hyphae play important roles in solid-state fermentation
(SSF) processes that involve filamentous fungi. For example, it has
been estimated that aerial hyphae are responsible for up to 75% of
the overall O2 uptake rate in SSF processes involving the fungus
Aspergillus oryzae [1]. During periods of static operation of biore-
actors, they can also form a mycelial network that binds substrate
particles, thereby forming agglomerates. These agglomerates are
problematic because they not only restrict the transport of O2 to
the surfaces of the particles within the agglomerates, but also favor
the formation of channels within the substrate bed [2].

An understanding of the micro-scale phenomena that gov-
ern the growth of aerial hyphae would lay the basis for a better
understanding of just how they influence the performance of SSF
processes. In a related system, namely the growth of filamentous
fungi in the form of pellets in submerged fermentation, various
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studies have characterized and modeled the spatial distribution of
hyphae within the pellets and how this affects oxygen diffusion
[3–7]. However, relatively little attention has been given to char-
acterizing and modeling how aerial hyphae of filamentous fungi
extend and branch to form a mycelial network within SSF systems
[8,9].

In 1998, Nopharatana et al. [10] developed a mathematical
model in which the growth of aerial hyphae was treated as a pro-
cess involving the diffusion of hyphal tips in the space above the
substrate surface. Later, confocal microscopy and image analysis
algorithms were used to obtain experimental data for the density
profile of biomass of Rhizopus oligosporus as a function of the height
above the surface of a model solid substrate [11]. However, the
results did not confirm the predictions of the earlier model: In the
later periods of growth, the hyphal densities predicted by the model
for heights above 1 mm were much greater than the experimental
values.

The model of Nopharatana et al. [10] is a continuous model,
in which discrete hyphal structures are not described; rather, the
mycelium is treated as a continuous distribution of biomass [12].
However, as pointed out by Boswell [13], a discrete modeling
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Fig. 1. Features of the system used to model the growth of aerial hyphae. (a) Division
of the space above the surface into an array of cubes. The variable z, which denotes
a horizontal plane of cubes, increases with height from plane at the bottom (z = 1)
to the plane at the top of the available space (z = zmax). (b) Interconnected cubes
represent a mycelial network originating from a spore (dark cube at the bottom). The
dashed cylinders show how the various stretches between branch points represent
hyphal segments. The labels 1D, 2D and 3D indicate the different orientations of the
segments (see Section 2.3).

approach has a better chance of capturing micro-scale behavior,
especially when growth occurs in heterogeneous environments.
Therefore the aim of the current work was to develop a discrete
approach that can be used to model growth of aerial hyphae in
the heterogeneous environment that occurs in SSF systems. We
demonstrate that the model developed is able to generate density
profiles for aerial hyphae that are consistent with the experimental
results of Nopharatana et al. [11]. It therefore represents a useful
tool for investigating phenomena that occur at the micro-scale in
solid-state fermentation systems.

2. Description of the discrete model

2.1. Basic features of the system

The space above the solid surface is divided into a 3-dimensional
array of cubes (Fig. 1a). The side of the cube (of length L = 10 �m) is
chosen so as to give a cross-sectional area of the cube (L2) similar to

that of a fungal hypha. Each element of the array represents empty
space, a hyphal tip or the fungal biomass of the hypha behind a tip.
A hypha is formed by a sequence of adjacent cubes filled by biomass
and may be branched (Fig. 1b).

The simulation involves successive iterations during which each
hyphal tip chooses a particular direction and moves a certain num-
ber of cubes in that direction. As the tip moves through positions in
the array it leaves behind a trail of biomass, which represents the
hyphal tube behind the tip. New tips can be generated by branching
events. Two types of hyphae with different branching patterns are
recognized: vegetative hyphae and reproductive hyphae. The gen-
eral sequence of events in the model is shown in Fig. 2. The rules
applied in these events are outlined in the following subsections.

2.2. Assumptions

Several assumptions are made in this model. Firstly, hyphal
biomass, once produced, does not disappear (i.e. the phenomenon
of autolysis is not described). Secondly, hyphal biomass is immo-
bile: once a cube is occupied by hyphal biomass, it remains occupied
by that same hyphal biomass. The only movement in the system
is the “laying down of new hyphal biomass” by the extending
hyphal tips. Thirdly, nutrients and O2 are available at the hyphal
tips at concentrations that do not limit growth. Fourthly, only api-
cal branching occurs (i.e. the phenomenon of lateral branching is
not described). Fifthly, growth takes place in a closed box, since
hyphae are not allowed to leave the system and do not enter the
system from outside.

2.3. Direction taken and distance moved during iterations

At the beginning of each iteration, each hyphal tip needs to
make a decision about the direction in which it will extend during
that iteration. Each cube in the array that is occupied by a hyphal
tip is surrounded by a probability field, superimposed on the 26
cubes adjacent to that of the tip (Fig. 3a). Each of these 26 cubes
is assigned a probability, representing the probability that the tip
will move in the direction of that cube during the next iteration.
The sum of the probabilities of these 26 adjacent cubes is equal to
unity. As explained in Section 2.5, steric considerations may mean
that movement in certain directions is forbidden. In this case, the
probabilities of choosing those directions are set to zero. The prob-
abilities in all of the remaining available directions are normalized
(i.e. such that they again sum to unity) by dividing by the sum of
the probabilities of the available directions. A random number is
then used to select which of the directions is taken by the tip.

Having chosen a direction, the hyphal tip extends a certain dis-
tance. The direction taken by the extending tip can have one of
three orientations in relation to the axes of the grid (Fig. 1b): (i) it
can be parallel to one of the axes of the grid and normal to the other
two, in which case successive cubes within a hyphal segment will
be joined by faces of the cube; (ii) it can be at a 45◦ angle to each
of two of the axes of the grid and normal to the third axis, in which
case successive cubes within a hyphal segment will be joined by an
edge; (iii) it can be at a 45◦ angle to all three axes, in which case
successive cubes within a hyphal segment will be joined by ver-
tices. Growth in these three orientations will be referred to as 1D,
2D and 3D growth, respectively.

During a given time interval, a hypha extending in unrestricted
space should extend by the same distance, regardless of its orien-
tation. The number of cubes added to the hypha during an iteration
therefore depends on the orientation of growth. Using Pythagoras’
rule, if L is the length of the cube edge, then the length that one
cube adds to the hypha, measured in the direction of growth, will
be L, L

√
2 and L

√
3 for growth in 1D, 2D and 3D, respectively. If, dur-

ing one iteration of unrestricted growth, 7n cubes are added for 1D
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