
Semantics preserving SPARQL-to-SQL translation

Artem Chebotko a,*, Shiyong Lu b, Farshad Fotouhi b

a Department of Computer Science, University of Texas-Pan American, 1201 West University Drive, Edinburg, TX 78539, USA
b Department of Computer Science, Wayne State University, 431 State Hall, 5143 Cass Avenue, Detroit, MI 48202, USA

a r t i c l e i n f o

Article history:
Received 6 July 2008
Received in revised form 2 April 2009
Accepted 3 April 2009
Available online 16 April 2009

Keywords:
SPARQL-to-SQL translation
SPARQL semantics
SPARQL
SQL
RDF
query
RDF store
RDBMS

a b s t r a c t

Most existing RDF stores, which serve as metadata repositories on the Semantic Web, use
an RDBMS as a backend to manage RDF data. This motivates us to study the problem of
translating SPARQL queries into equivalent SQL queries, which further can be optimized
and evaluated by the relational query engine and their results can be returned as SPARQL
query solutions. The main contributions of our research are: (i) We formalize a relational
algebra based semantics of SPARQL, which bridges the gap between SPARQL and SQL query
languages, and prove that our semantics is equivalent to the mapping-based semantics of
SPARQL; (ii) Based on this semantics, we propose the first provably semantics preserving
SPARQL-to-SQL translation for SPARQL triple patterns, basic graph patterns, optional graph
patterns, alternative graph patterns, and value constraints; (iii) Our translation algorithm is
generic and can be directly applied to existing RDBMS-based RDF stores; and (iv) We out-
line a number of simplifications for the SPARQL-to-SQL translation to generate simpler and
more efficient SQL queries and extend our defined semantics and translation to support the
bag semantics of a SPARQL query solution. The experimental study showed that our pro-
posed generic translation can serve as a good alternative to existing schema dependent
translations in terms of efficient query evaluation and/or ensured query result correctness.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The Semantic Web [7,47] has recently gained tremendous momentum due to its great potential for providing a common
framework that allows data to be shared and reused across application, enterprise, and community boundaries. Semantic
annotations for various heterogeneous resources on the Web are represented in Resource Description Framework (RDF)
[56,58], the standard language for annotating resources on the Web, and searched using the query language for RDF, called
SPARQL [59], that has been proposed by the World Wide Web Consortium (W3C) and has recently achieved the recommen-
dation status. Essentially, RDF data is a collection of statements, called triples, of the form ðs; p; oÞ, where s is called subject, p is
called predicate, and o is called object, and each triple states the relation between a subject and an object. Such a collection of
triples can be viewed as a directed graph, in which nodes represent subjects and objects, and edges represent predicates con-
necting from subject nodes to object nodes. To query RDF data, SPARQL allows the specification of triple and graph patterns
to be matched over RDF graphs.

Explosive growth of RDF data on the Web drives the need for novel database systems, called RDF stores, that can efficiently
store and query large RDF datasets. Most existing RDF stores, including Jena [63,62], Sesame [9], 3store [27,28], KAON [54],
RStar [35], OpenLink Virtuoso [22], DLDB [38], RDFSuite [3,52], DBOWL [37], PARKA [50], RDFProv [12], and RDFBroker [48]
use a relational database management system (RDBMS) as a backend to manage RDF data. The main advantage of the

0169-023X/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2009.04.001

* Corresponding author. Tel.: +1 956 381 2577; fax: +1 956 384 5099.
E-mail addresses: artem@cs.panam.edu (A. Chebotko), shiyong@wayne.edu (S. Lu), fotouhi@wayne.edu (F. Fotouhi).

Data & Knowledge Engineering 68 (2009) 973–1000

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/locate /datak

mailto:artem@cs.panam.edu
mailto:shiyong@wayne.edu
mailto:fotouhi@wayne.edu
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak


RDBMS-based approach is that a mature and vigorous relational query engine with transactional processing support can be
reused to provide major functionalities for RDF stores. The main challenge of this approach is that one needs to resolve the
conflict between the graph RDF data model and the target relational data model. This usually requires various mappings,
such as schema mapping, data mapping, and query mapping, to be performed between the two data models. One of the most
difficult problems in this approach is the translation of SPARQL queries into equivalent relational algebra expressions and
SQL queries, which can be further optimized and evaluated by the relational query engine and their results can be returned
as SPARQL query solutions.

We identify three goals of SPARQL-to-SQL translation that are very important to achieve:

(1) Correctness. A semantics preserving translation is required to ensure that the semantics of a SPARQL query is equivalent
to the semantics of this query translated into SQL, such that the SPARQL and SQL queries produce equivalent results.

(2) Schema-independence. A generic translation which does not depend on a particular relational database schema can be
used for various database representations employed in existing RDF stores.

(3) Efficiency. An efficient translation should not only generate equivalent SQL queries quickly, but also ensure that gen-
erated queries are efficient in terms of their evaluation over a relational database.

Existing relational RDF stores implement different SPARQL-to-SQL translation algorithms based on subjective interpreta-
tions of the mapping-based semantics of SPARQL [59,39,40]. Although the mapping-based semantics of SPARQL defines a
precise and concise SPARQL query evaluation mechanism, it does not support SPARQL-to-SQL translation directly. As a result,
existing solutions succeed in approaching the goal of efficiency, but fail to show to be semantics preserving and/or generic.
The major obstacle to the definition of a mathematically rigorous SPARQL-to-SQL translation is the gap between RDF and
relational models, in general, and between SPARQL and SQL, in particular.

In this work, we define our relational algebra based semantics of SPARQL and propose the first provably semantics pre-
serving and generic SPARQL-to-SQL translation. Furthermore, we extend the semantics and translation to support the bag
semantics of a SPARQL query solution and outline our simplifications to the translation to generate simpler and more effi-
cient SQL queries. Our main contributions are summarized in the following:

� We formalize a relational algebra based semantics of SPARQL as a function eval, which bridges the gap between SPARQL
and SQL. We prove that eval is equivalent to the mapping-based semantics of SPARQL under the interpretation function1 k,
which is used to establish the equivalence relationship2 between two SPARQL solution representations: a relational represen-
tation and a mapping-based representation.

� We define a SPARQL-to-SQL translation as a function trans for core SPARQL constructs and prove that trans is semantics
preserving with respect to the relational algebra based semantics of SPARQL under the interpretation function /, which is
used to establish the equivalence relationship between a relation produced by the relational algebra based SPARQL
semantics eval and a relation produced by the evaluation of a trans-generated SQL query; eval and trans may produce rela-
tions with different relational attribute names due to the SQL naming constraints. trans supports the translation of SPARQL
queries with triple patterns, basic graph patterns, optional graph patterns, alternative graph patterns, and value con-
straints. trans is the first provably semantics preserving translation in the literature.

� We achieve the generic property for our SPARQL-to-SQL translation trans, such that it supports both schema-oblivious and
schema-aware database representations of existing RDBMS-based RDF stores. We do this by full separation of the trans-
lation from the relational database schema design (represented by RDF-to-Relational mappings a and b). We verify that
trans can be implemented in at least 12 existing RDF stores, including Jena, Sesame, 3store, KAON, RStar, OpenLink Virtu-
oso, DLDB, RDFSuite, DBOWL, PARKA, RDFProv, and RDFBroker.

� We outline a number of simplifications for the SPARQL-to-SQL translation to generate simpler and more efficient SQL que-
ries, and extend eval and trans to support the bag semantics of a SPARQL query solution.

� Finally, we conduct an experimental study to explore how our generic SPARQL-to-SQL translation compares to existing
schema dependent translations and how our proposed simplifications affect query performance.

The big picture of our research flow is illustrated in Fig. 1. At the data level, we define RDF-to-Relational mappings a and
b, which capture how an RDF graph is stored into a relational database. At the query level, the figure illustrates the first two
contributions discussed above, where the dashed arrow represents the mapping-based semantics of SPARQL defined in [39],
the dotted arrows represent our contributions to the definition of relational algebra based semantics of SPARQL, and the solid
arrows represent our contributions to the definition of the SPARQL-to-SQL translation. The leftmost () arrow represents
the equivalence between the two semantics definitions, and the rightmost () arrow represents that the translation is
semantics preserving with respect to the relational algebra based semantics of SPARQL. The third contribution, the generic
goal, is achieved by full separation of the translation from the relational database schema design via the use of mappings a
and b, that are first defined at the data level and later passed as parameters to the translation.

1 Here and after, by ‘‘under the interpretation function”, we mean that the function is applied to a query solution.
2 Here and after, by ‘‘equivalence” or ‘‘equivalence relationship”, we mean the mathematical equivalence between sets of elements (represent query

solutions) or functions (represent query language semantics), which should be clear from the context.

974 A. Chebotko et al. / Data & Knowledge Engineering 68 (2009) 973–1000



Download English Version:

https://daneshyari.com/en/article/379028

Download Persian Version:

https://daneshyari.com/article/379028

Daneshyari.com

https://daneshyari.com/en/article/379028
https://daneshyari.com/article/379028
https://daneshyari.com

