
The refined process structure tree

Jussi Vanhatalo a,b,1, Hagen Völzer a,*, Jana Koehler a

a IBM Zurich Research Laboratory, Säumerstrasse 4, CH-8803 Rüschlikon, Switzerland
b Institute of Architecture of Application Systems, University of Stuttgart, Universitätsstrasse 38, D-70569 Stuttgart, Germany

a r t i c l e i n f o

Article history:
Available online 9 March 2009

Keywords:
Workflow management
Workflow graph parsing
Model decomposition
Subprocess detection
Graph theory

a b s t r a c t

We consider a workflow graph as a model for the control flow of a business process and
study the problem of workflow graph parsing, i.e., finding the structure of a workflow
graph. More precisely, we want to find a decomposition of a workflow graph into a hierar-
chy of sub-workflows that are subgraphs with a single entry and a single exit of control.
Such a decomposition is the crucial step, for example, to translate a process modeled in
a graph-based language such as BPMN into a process modeled in a block-based language
such as BPEL. For this and other applications, it is desirable that the decomposition be
unique, modular and as fine as possible, where modular means that a local change of the
workflow graph can only cause a local change of the decomposition. In this paper, we pro-
vide a decomposition that is unique, modular and finer than in previous work. We call it
the refined process structure tree. It is based on and extends similar work for sequential pro-
grams by Tarjan and Valdes [ACM POPL ’80, 1980, pp. 95–105]. We give two independent
characterizations of the refined process structure tree which we prove to be equivalent: (1)
a simple descriptive characterization that justifies our particular choice of the decomposi-
tion and (2) a constructive characterization that allows us to compute the decomposition in
linear time. The latter is based on the tree of triconnected components (elsewhere also
known as the SPQR tree) of a biconnected graph.

� 2009 Elsevier B.V. All rights reserved.

1. Introduction

The control flow of a business process can often be modeled as a workflow graph [1]. Workflow graphs capture the core of
many business process languages such as UML activity diagrams, BPMN and EPCs. We study the problem of parsing a work-
flow graph, that is, decomposing the workflow graph into a hierarchy of sub-workflows that have a single entry and a single
exit of control, often also called blocks, and labeling these blocks with a syntactical category they belong to. Such categories
are sequence, if, repeat-until, etc., see Fig. 1a. Such a decomposition is also called a parse of the workflow graph. It can also be
shown as a parse tree, see Fig. 1c.

The parsing problem occurs when we want to translate a graph-based process description (e.g. a BPMN diagram) into a
block-based process description (e.g. BPEL process), but there are also other use cases for workflow graph parsing. For exam-
ple, Vanhatalo, Völzer and Leymann [2] show how parsing speeds up control-flow analysis. Küster et al. [3] show how dif-
ferences between two process models can be detected and resolved based on decompositions of these process models.
Gschwind et al. [4] use parsing for pattern-based editing operations of process models. We believe that parsing also helps
in understanding large processes and in finding reusable subprocesses.

0169-023X/$ - see front matter � 2009 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2009.02.015

* Corresponding author. Tel.: +41 44 724 8395; fax: +41 44 724 8953.
E-mail addresses: jussi.vanhatalo@ieee.org (J. Vanhatalo), hvo@zurich.ibm.com (H. Völzer), koe@zurich.ibm.com (J. Koehler).

1 Tel.: +41 44 724 8111; fax: +41 44 724 8953.

Data & Knowledge Engineering 68 (2009) 793–818

Contents lists available at ScienceDirect

Data & Knowledge Engineering

journal homepage: www.elsevier .com/locate /datak

mailto:jussi.vanhatalo@ieee.org
mailto:hvo@zurich.ibm.com
mailto:koe@zurich.ibm.com
http://www.sciencedirect.com/science/journal/0169023X
http://www.elsevier.com/locate/datak


For a roundtripping between a BPMN diagram and a BPEL process, it is desirable that the decomposition be unique, i.e.,
the same BPMN diagram always translates to the same BPEL process. Consider, for example, the workflow graph in Fig. 1a.
The translation algorithm proposed by Ouyang et al. [5] is nondeterministic. It may produce one of the two parses shown in
Fig. 1a and b, depending on whether the if-block or the repeat-until-block is found first by the parsing algorithm.

One idea to resolve some of this nondeterminism is to define priorities on the syntactic categories to be found [5–7]. For
example, if in each step the parsing algorithm tries to find sequences first, then if-blocks and then repeat-until-blocks, we
can only obtain the parse in Fig. 1a in our example. However, this can introduce another problem. If we change a single block,
say, the repeat-until block by replacing it, e.g. by a single task, we obtain the workflow graph shown in Fig. 1d. Fig. 1d also
shows the parse we obtain with the particular priorities mentioned above. The corresponding parse tree is shown in Fig. 1e.
It cannot be derived from the tree in Fig. 1c by just a local change, viz., by replacing the Repeat-Until subtree. For a round-
tripping between a BPMN diagram and a BPEL process, it would be much more desirable that a local change in the BPMN
diagram also result in only a local change in the BPEL process. Replacing a block in the BPMN diagram would therefore only
require replacing the corresponding block in the BPEL process. We then call a such decomposition modular. The existing ap-
proach to the BPMN to BPEL translation problem [5] is not modular. Furthermore, it does not provide, because of the above
problems, a specification of the translation that is independent of the actual translation algorithm.

A unique and modular decomposition is provided by the program structure tree defined by Johnson et al. [8,9] for sequen-
tial programs. It was applied to workflow graphs by Vanhatalo et al. [2] to find control-flow errors. The corresponding
decomposition for our first example is shown in Fig. 2. It uses the same notion of a block as Ouyang et al. [5] do, that is,
a block is a connected subgraph with a single entry and a single exit edge. But in contrast to the approach of Ouyang
et al. [5], non-maximal sequences are disregarded in the program structure tree. For example, Sequence 2 in Fig. 1a [likewise
Sequence 3 in subfigure (b)] is non-maximal: it is in sequence with another block.

Another general requirement for parsing is to find as much structure as possible, i.e., to decompose into blocks that are as
fine as possible. As we will see (cf. Section 6), this allows us to map more BPMN diagrams to BPEL in a structured way. It has
also been argued [5] that the BPEL process is more readable if it contains more blocks. Furthermore, debugging is easier when
an error is local to a small block rather than to a large one.

In this paper, we provide a new decomposition that is finer than the program structure tree as defined by Johnson et al.
[8,9]. It is based on and extends similar work for sequential programs by Tarjan and Valdes [10]. The underlying notion of a
block is a connected subgraph with unique entry and exit nodes (as opposed to edges in the previous approach). Accord-
ingly, all blocks of the previous approach are found, but more may be found, resulting in a more refined parse tree. There-
fore, we call our decomposition the refined process structure tree (RPST, for short). We prove that our RPST is unique and
modular.

s1 e1x2x1

a2
a1

a4

s1 e1x4x3x2x1
a1

a3a2
s1 e1x4x3x2x1

a1
a3a2

(a) (b)

If Repeat-Until
Sequence 2

Sequence 1

If Repeat-Until
Sequence 3

Sequence 1

(d)

If Sequence 3
Sequence 1

(c) (e)

If

Repeat-Until

Sequence 1

Sequence 2

a1

a2 a3

If

Sequence 1

Sequence 3

a2 a4a1

Fig. 1. (a), (b) Two parses of the same workflow graph. (c) Parse tree corresponding to (a). (d) Workflow graph obtained by a local change and its parse. (e)
Parse tree corresponding to (d).

Sequence 1
litnU-taepeRfI

s1 e1x4x3x2x1
a1

a3a2

Fig. 2. Modular decomposition of the process from Fig. 1.

794 J. Vanhatalo et al. / Data & Knowledge Engineering 68 (2009) 793–818



Download	English	Version:

https://daneshyari.com/en/article/379121

Download	Persian	Version:

https://daneshyari.com/article/379121

Daneshyari.com

https://daneshyari.com/en/article/379121
https://daneshyari.com/article/379121
https://daneshyari.com/

