
Scheduling-free resource management

Kees van Hee, Alexander Serebrenik, Natalia Sidorova *,
Marc Voorhoeve, Jan van der Wal

Eindhoven University of Technology, Department of Mathematics and Computer Science, P.O. Box 513,

5600 MB Eindhoven, The Netherlands

Received 11 April 2006; received in revised form 11 April 2006; accepted 11 April 2006
Available online 24 May 2006

Abstract

We investigate a resource management policy that allocates resources based on the number of available resources only.
We formulate a condition on resource requesting processes, called solidity that guarantees successful termination. Pro-
cesses that do not satisfy this condition can be modified to become solid. We investigate performance of the resource man-
agement policy proposed by comparing it to the theoretically found optimum for the special case. Our method can be
applied in, for example, project management systems, orchestration software and workflow engines.
� 2006 Elsevier B.V. All rights reserved.

Keywords: Business process; Workflow; Resource management; Correctness; Scheduling

1. Introduction

Workflow nets [1–4], a special class of Petri nets, are frequently used to model business processes. In busi-
ness processes, three elements are essential: cases to be processed, tasks to be performed on the cases and
resources needed to perform these tasks. The execution of a specific task for a specific case is called activity.
Traditionally, models of workflow nets emphasize the partial ordering of activities in the process and abstract
from any resources needed, such as money, machinery or manpower. Petri nets are well-suited for modeling
resource dependence of activities [6,11,14,15,22], so it is natural to extend workflow nets with resources. The
so-called resource-constrained workflow nets [18] assume durable rather than consumable resources. The addi-
tion of resource dependencies may introduce deadlocks in an otherwise well-designed (sound [1]) workflow
net.

0169-023X/$ - see front matter � 2006 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2006.04.008

* Corresponding author. Tel.: +31 40 2473705; fax: +31 40 2463992.
E-mail addresses: k.m.v.hee@tue.nl (K. van Hee), a.serebrenik@tue.nl (A. Serebrenik), n.sidorova@tue.nl (N. Sidorova),

m.voorhoeve@tue.nl (M. Voorhoeve), jan.v.d.wal@tue.nl (J. van der Wal).

Data & Knowledge Engineering 61 (2007) 59–75

www.elsevier.com/locate/datak

mailto:k.m.v.hee@tue.nl
mailto:a.serebrenik@tue.nl
mailto:n.sidorova@tue.nl
mailto:m.voorhoeve@tue.nl
mailto:jan.v.d.wal@tue.nl


Assessment of business process models involves correctness and efficiency. Correctness requirements include
proper termination: the fact that all open cases can be completed and claimed resources returned from any
reachable state, provided the initial number of resources exceeds some fixed minimum. Efficiency criteria
can be divided into quality of service (QoS) and costs of operation (CoO) criteria.

We consider business process models with resources belonging to a single class. Cases are independent, i.e.
they only influence each other via the resources they need. They communicate with a resource manager by
claiming and releasing resources in various quantities. The resource manager (human or software) decides
when to grant the claims. No preemption or priority requests are allowed. The resource manager bases its deci-
sions on the global state of the process, i.e. the number of cases, the state of each case and the number of avail-
able resources.

The first task of resource management is to ensure that needed resources are always eventually available,
which involves dynamic scheduling. In contrast to static scheduling problems, in which all cases to be handled
are known, in dynamic scheduling problems the arrival, routing and resource consumption of cases cannot be
predicted. The banker’s algorithm of Dijkstra [12] ensures correctness in this way. This algorithm considers
the number of available resources and for each case the maximal number of resources needed by the case
(credit limit) and the number of resources claimed but not yet returned so far (debt). Dijkstra’s algorithm con-
siders correctness only, but it leaves room for prioritizing between cases that need resources when they become
available. These priorities can be based on heuristics like FCFS (first come first served), SPT (shortest remain-
ing processing time) or EDD (earliest due date) and they can be compared for efficiency.

In [18], we considered processes with the scheduling-free resource management policy, i.e. the policy when a
resource request may be granted whenever enough resources are available to satisfy the request. We also for-
mulated a property regarding the resource behavior of cases, which we call solidity. A business process con-
sisting of any number of cases and working under the scheduling-free resource management policy is
guaranteed to terminate properly if and only if all cases are solid. Moreover, the process is robust w.r.t.
the addition of cases during the process run, i.e. it stays proper terminating.

Cases that are not solid can be solidified by setting thresholds: additional resources that need to be available
for each resource claim. Resources are granted to a task only if the number of available resources exceeds the
number of claimed resources plus the threshold. Thresholds are chosen according to the following policy:
before committing resources to a case, make sure that there are enough resources available to allow its completion

independent of other cases. The thresholds can be determined in advance, when the business process is defined.
Setting thresholds is akin to a well known approach in production control [9].

In this paper, which is an extension of [19], we investigate resource scheduling based on solidification. To
determine thresholds that perform well, an iterative, simulation-based approach is proposed. We illustrate our
approach with a small example inspired by the construction industry. Resource management based on thres-
holds has a runtime computational complexity that does not depend on the number of active cases, which
makes it very suitable for workflow management systems. It is interesting to compare the performance of
the robust threshold-based resource managers to more sophisticated ones, thus investigating the price of coor-
dination (cost of robustness). For a tiny (tandem queue) example, we did compute an optimal global scheduler
by means of Markov decision theory [21] and compared the performance of the robust and optimal resource
schedulers.

Related work The problem of scheduling shared resources in flexible manufacturing systems has been stud-
ied extensively, specifically by modelling them as Petri nets (see [11,14,15,22,23] for an overview of works in
this field). Like in our work, most of these works use invariants to give a necessary condition for the correct-
ness of the use of resources. However, the authors focus on extending a model that represents the production
process with a scheduler in order to avoid deadlocks and to use resources in the most efficient way; e.g. [14,15]
propose a control policy for deadlock prevention based on ensuring that no siphon can be emptied. As men-
tioned above, our goal is to build a scheduling-free resource manager.

In [6] the authors consider structural analysis of Workflow nets with shared resources. Unlike this work we
consider systems where the number of available resources can vary. So we require that the system should work
correctly for any number of cases and resources.

The works [10,13] focus on the verification of LTLnX properties in networks of processes that interact by
sharing resources. Both [10,13] use cut-offs to reduce their verification problems to finite-state model checking.

60 K. van Hee et al. / Data & Knowledge Engineering 61 (2007) 59–75



Download English Version:

https://daneshyari.com/en/article/379331

Download Persian Version:

https://daneshyari.com/article/379331

Daneshyari.com

https://daneshyari.com/en/article/379331
https://daneshyari.com/article/379331
https://daneshyari.com

