Available online at www.sciencedirect.com

. . DATA &
i ScienceDirect KNOWLEDGE
sl ENGINEERING
ELSEVIER Data & Knowledge Engineering 64 (2008) 365-380

www.elsevier.com/locate/datak

Efficient and compact indexing structure for processing
of spatial queries in line-based databases ™

Hung-Yi Lin *
Department of Logistics Engineering and Management, National Taichung Institute of Technology, 129, Sanmin Rd., Sec. 3,
Taichung, Taiwan, ROC

Received 8 August 2006; received in revised form 3 August 2007; accepted 4 September 2007
Available online 22 September 2007

Abstract

Points, lines and regions are the three basic entities for constituting vector-based objects in spatial databases. Many
indexing schemes have been widely discussed for handling point or region data. These traditional schemes can efficiently
organize point or region objects in a space into a hashing or hierarchical directory, and they provide efficient access meth-
ods for accurate retrievals. However, two difficulties arise when applying such methods to line segments: (1) the spatial
information of line segments may not be precisely expressed in terms of that of points and/or regions, and (2) traditional
methods for handling line segments can generate a large amount of dead space and overlapping areas in internal and exter-
nal nodes in the hierarchical directory. The first problem impedes high-quality spatial conservation of line segments in a
line-based database, while the second degrades the system performance over time. This study develops a novel indexing
structure of line segments based on compressed B* trees. The proposed method significantly improves the time and space
efficiencies over that of the R-tree indexing scheme.
© 2007 Elsevier B.V. All rights reserved.

Keywords: Spatial database; Line segments; Indexing structure; GIS; Compressed B'-tree; R-tree

1. Introduction

Large spatial databases have been extensively adopted in the recent decade, and various methods [3,8,19,21]
have been presented to store, browse, search and retrieve spatial objects. A good spatial database can preserve
and arrange explicit and implicit information of spatial objects. Explicit information of an object includes its
location, extent, orientation, size and circumference. Implicit information includes the spatial relationship
between distinct objects, the distribution and density of objects in a specific area and the coverage for some
objects. Gaede and Gunther [4] classified spatial objects in d-dimensional Euclidean space (E?) into d+ 1
types. For each k (0 < k < d), the set of k-dimensional polyhedra forms a data type. For instance, a

* This research was supported by Nation Science Council of ROC under Grant 96-2221-E-025-013.
" Tel.: +886 4 2219 6769; fax: +886 4 2219 6161.
E-mail address: linhy@ntit.edu.tw

0169-023X/$ - see front matter © 2007 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2007.09.009


mailto:linhy@ntit.edu.tw

366 H.-Y. Lin | Data & Knowledge Engineering 64 (2008) 365-380

two-dimensional graph may contain a zero-dimensional polyhedron (points), a one-dimensional polyhedron
(lines, polylines) and a two-dimensional polyhedron (regions, polygons). An efficient spatial database has a
well-organized indexing structure, and enables the easy retrieval interested objects for user queries.

The construction of spatial databases differs from that of traditional databases in many respects. First, the
data model representing spatial objects must be determined in advance of processing an index scheme. A spa-
tial object may be a single point, a line segment, a curve, a polygonal segment, a 2D polygon or a multidimen-
sional polygon, its spatial information needs to be preserved precisely. Second, insertions and deletions are
interleaved with updates, since spatial objects are often dynamic. The data structures adopted in this context
need to support this dynamic behavior without deteriorating over time. Third, spatial databases tend to be
large, making the integration of secondary and tertiary memory essential for efficient processing.

Two-dimensional objects can be categorized according to their space occupancies. Points with zero spatial
occupancy are generally depicted by explicit coordinates, which are handled and queried by many traditional
methods. Polygons, circles, ellipses and rectangles are regional data with nonzero spatial occupancy, and are
generally depicted by rectangular objects, which are also indexed and queried accordingly by many traditional
methods. A line segment does not enclose any area, so cannot be categorized as a nonzero-size object. How-
ever, in many previous studies [9,16,22], line segments are enclosed and represented by grids, cells, rectangles
or MBRs (minimum bounding rectangles). Such methods represent line segments using nonzero-size objects
and the corresponding index entries include much redundant information in their representations. Such redun-
dancy at leaf level in the hierarchical directory propagates upward to the root and aggravates this redundant
condition at higher levels. The resulting indexing structure suffers from many problems, such as the heavy
building overhead cost of index structures, poor system execution performance, low retrieval accuracy and
the incapability of processing certain types of query.

The rest of this paper is organized as follows. Section 2 reviews pertinent literature on point and region
indexing methods. The inefficiency of the traditional methods for handling line objects is then addressed. Sec-
tion 3 then presents a variant of B'-tree to facilitate line indexing. Section 4 describes the construction of an
indexing structure for line segments, and demonstrates the process by an example. Section 5 presents the algo-
rithms for insertion and deletion of a line segment, and three query processing methods. Section 5 also ana-
lyzes the time complexity for all query processes. Section 6 discusses the performance of the proposed indexing
structures. Section 7 summarizes the experimental results of a GIS application, in which the storage require-
ment and retrieval performance of the proposed system are compared with those of the R-tree indexing
scheme. Conclusions are finally drawn in Section 8.

2. Overview of previous methods

Many methods for handling point and region data have been proposed during the last two decades. The
grid file [13] and its variants [2,20] adopt the point access method based on hashing. The KD-tree [1]is a binary
search tree that stores points in k-dimensional space, and at each intermediate node, the KD-tree divides the k-
dimensional space in two parts by a (k — 1)-dimensional hyperplane. The K~D-B tree [17] and the G-tree [10]
are the typical structures for indexing point data. Grid files proposed in [13] can handle spatial objects with
points or regions. The R-tree proposed by Guttman [5] is probably the most popular structure for indexing
nonzero-size objects. An R-tree adopts MBRs to enclose nonzero-size objects, and then represent them as
indexed entities. R-trees have been widely employed to index the spatial objects in a large pictorial database
such as the GIS application [15].

Although the above-mentioned structures can efficiently process a large number of point objects, uniform
grid data and non-uniform MBR data, they do not index line segments well. Applying these structures to line
segments causes three major problems. First, using only the endpoints or some specific points of a line does
not preserve the full spatial information, since a line comprises infinitely many points, and can involve a wide
space. Second, adopting M BRs for slender or winding objects can easily introduce dead space. Dead space is
the redundant space outside an object and inside its MBR. Such redundant space easily leads to serious over-
laps between MBRs at each level in an indexing tree. Fig. 1 shows MBR, and MBR; enclosing /| and [,, respec-
tively. Lines /; and /[, do not intersect, yet MBR, and MBR, overlap each other. Third, various spatial
relationships exist among line segments. For instance, a line may have no joint with others; a line may be a



Download English Version:

https://daneshyari.com/en/article/379357

Download Persian Version:

https://daneshyari.com/article/379357

Daneshyari.com


https://daneshyari.com/en/article/379357
https://daneshyari.com/article/379357
https://daneshyari.com

