
Extracting generalization hierarchies from relational
databases: A reverse engineering approach

Nadira Lammari a, Isabelle Comyn-Wattiau b,*, Jacky Akoka c

a CEDRIC-CNAM, 292 Rue Saint Martin, 75141 Paris Cedex 03, France
b CEDRIC-CNAM and ESSEC, 292 Rue Saint Martin, 75141 Paris Cedex 03, France

c CEDRIC-CNAM and INT, 292 Rue Saint Martin, 75141 Paris Cedex 03, France

Received 28 August 2004; received in revised form 26 April 2006; accepted 11 April 2007
Available online 21 April 2007

Abstract

Relational Data Base Management Systems (RDBMS) are currently the most popular database management systems.
The relational model is a simple and powerful model for representing real world applications. However, it lacks the expres-
siveness of conceptual models. Unlike the latter, the relational model does not offer the generalization abstraction. There-
fore, it does not allow the designer to represent directly a large variety of integrity constraints. Moreover, inclusion
dependencies formalizing inter-relational constraints cannot directly be represented in the relational model, due to the fact
that its basic construct, the relation, is the unique structure. Finally, relational databases do not enable a natural way to
represent inheritances. In this paper we describe a reverse engineering method which particularly deals with the elicitation
of inheritance links embedded in a relational database, combining heuristic and algorithmic approaches. We provide rules
for detecting intersection constraints and inclusion dependencies. Heuristics are proposed for understanding null value
semantics. Finally, we present decision rules for detecting existence dependencies and translating them into IS-A hierar-
chies among entities. An example is used to illustrate our approach.
� 2007 Elsevier B.V. All rights reserved.

Keywords: Reverse engineering; IS-A inheritance links; Relational databases; Extended entity-relationship (EER) model; Generalization
hierarchies

1. Introduction

The relational data model is known to be a semantically poor model. As an illustration, the concept of gen-
eralization/specialization (G/S) cannot be directly represented. The G/S concept has been introduced by Smith
and Smith [27]. It has been incorporated in the Entity-Relationship (ER) model by Scheuermann et al. [24].
Basically, entity-type E may be considered as a generalization of the entities E1,E2, . . .,En if every instance

0169-023X/$ - see front matter � 2007 Elsevier B.V. All rights reserved.

doi:10.1016/j.datak.2007.04.002

* Corresponding author. Tel.: +33 1 34 43 30 76; fax: +33 1 34 43 30 01.
E-mail addresses: lammari@cnam.fr (N. Lammari), wattiau@cnam.fr (I. Comyn-Wattiau), akoka@cnam.fr (J. Akoka).

Data & Knowledge Engineering 63 (2007) 568–589

www.elsevier.com/locate/datak

mailto:lammari@cnam.fr
mailto:wattiau@cnam.fr
mailto:akoka@cnam.fr


of E is also an instance of at least one Ei. In other words, E1,E2, . . .,En are specializations of E. Each special-
ization may usually be distinguished by the value of one or several attributes. Specialized entities inherit the
properties of more general entities. The basic idea of inheritance is that new entities may be defined in a data-
base schema as specializations of previously defined entities. The main advantage is to facilitate evolutions of
the database schema. It also allows the designer to integrate different user views of the database. It provides
the designer with a semantically sound mechanism for representing IS-A hierarchies whatever the number of
specializations.

As an illustration, let us consider a database which maintains details of various types of persons (students,

clerks, professors, etc.) in a university. We choose to define a PERSON as a generalization of STUDENT.
In the Extended Entity-Relationship (EER) model, inheritance represents the IS-A relationship: ‘‘every stu-

dent is a person’’. It implies that every attribute relevant for PERSON instances is inherently applicable to

STUDENT instances. The relational model provides no mechanism for incorporating such semantic informa-

tion. The resulting relational schema may be defined as follows:

PERSON (SSN, Name, Age)

STUDENT (SSN, Name, Age, Department, Degree)

The relation PERSON contains all the instances of persons except students in order to avoid redundancy.

A view representing all the instances of the generalization can be specified. Another possible implementation

consists of one relation PERSON defined by all the attributes of the hierarchy. In this case, null values are

introduced and existence dependencies must be specified. A third usual solution consists in implementing the

following relations:

PERSON (SSN, Name, Age)
STUDENT (SSN, Department, Degree)

with a referential integrity constraint between SSN of student and SSN of Person.

More generally, relational databases lack concepts that enable a natural representation of inheritance. As a
consequence, designers have to resort to different strategies such as representing only specializations, introduc-
ing null values, defining inclusion dependencies and views.

Database reverse engineering is a set of techniques allowing the designer to extract semantics from exist-
ing databases in order to facilitate their maintenance and to enable their migration. This paper deals with
relational database reverse engineering, especially with generalization hierarchies reverse engineering. Dis-
covering these concealed semantic links is a crucial task. The latter requires the elicitation of the underlying
concepts of existence and inclusion dependencies. Many algorithms have been proposed to perform a reverse
engineering process of relational databases. While they share a number of features in common, only seven
algorithms adopt a specific approach for eliciting generalization/specialization hierarchies [6,8,12,15,20,
23,29].

The aim of this paper is to focus on generalization hierarchies reverse engineering. This process is inte-
grated into a relational database reverse engineering global approach called MeRCI (a French acronym
for Méthode de Rétro-Conception Intelligente) [10]. One contribution of this paper is to formalize the
detection of generalization hierarchies using three common information sources explored by the reverse
engineer when available: the database structure expressed as Data Definition Language (DDL) specifica-
tions, the database dynamics through Data Manipulation Language (DML) queries and programs and,
finally, the actual data. Another main contribution of this paper is related to the tight combination of
algorithmic and heuristic rules. Our approach structures the rules described in past approaches for gener-
alization hierarchies reverse engineering and enriches them with new rules, especially based on null values,
homonyms and synonyms, existence dependencies and intersection constraints.

N. Lammari et al. / Data & Knowledge Engineering 63 (2007) 568–589 569



Download English Version:

https://daneshyari.com/en/article/379412

Download Persian Version:

https://daneshyari.com/article/379412

Daneshyari.com

https://daneshyari.com/en/article/379412
https://daneshyari.com/article/379412
https://daneshyari.com

