Available online at www.sciencedirect.com

i i DATA &
ScienceDirect KNOWLEDGE
ENGINEERING

ool ¥ 25
ELSEVIER Data & Knowledge Engineering 59 (2006) 652-680

www.elsevier.com/locate/datak

A graph grammars based framework for querying
graph-like data ™

Sergio Flesca ?, Filippo Furfaro **, Sergio Greco *°

& Dipto Elettronica Informatica e ISI-CNR, Universita della Calabria, Sistemistica, Via P Rucci 41 C, 87030 Rende-Cosenza, Italy
® JCAR-CNR, 87030 Rende, Italy

Received 1 November 2005; accepted 1 November 2005
Available online 1 December 2005

Abstract

The widespread use of graph-based models for representing data collections (e.g. object-oriented data, XML data, etc.)
has stimulated the database research community to investigate the problem of defining declarative languages for querying
graph-like databases. In this paper, a new framework for querying graph-like data based on graph grammars is proposed.
The new paradigm allows us to verify structural properties of graphs and to extract sub-graphs. More specifically, a new
form of query (namely graph query) is proposed, consisting in a particular graph grammar which defines a class of graphs
to be matched on the graph representing the database. Thus, differently from path queries, the answer of a graph query is
not just a set of nodes, but a subgraph, extracted from the input graph, which satisfies the structural properties defined by
the graph grammar. Expressiveness and complexity of different forms of graph queries are discussed, and some practical
applications are shown.
© 2005 Elsevier B.V. All rights reserved.

Keywords: Query language; Semistructured data; Graph grammars

1. Introduction

The widespread use of graph based models for representing data collections (e.g. object-oriented data,
XML data, etc.) has stimulated the database research community to investigate the problem of defining
declarative languages for querying graph-like databases [1,3,17,18,22]. Recently, several languages and proto-
types have been proposed for searching both generic graph-like data and specific types of graph data such as
XML. The most widely used mechanism for extracting information from graphs is that of path queries, due to
its simplicity and declarative nature. Basically path queries are navigational queries expressed by means of reg-
ular expressions denoting paths in the graph [2,4,6,12,19,23]. A path query of the form (I',r), where I' is a set
of node labels and r a regular expression, defines the query ““find all the nodes reachable from a node whose label

* Work partially supported by a MURST grant under the project “D2I”.
* Corresponding author.
E-mail addresses: flesca@deis.unical.it (S. Flesca), furfaro@si.deis.unical.it (F. Furfaro), greco@deis.unical.it (S. Greco).

0169-023X/$ - see front matter © 2005 Elsevier B.V. All rights reserved.
doi:10.1016/j.datak.2005.11.001

mailto:flesca@deis.unical.it
mailto:furfaro@si.deis.unical.it
mailto:greco@deis.unical.it

S. Flesca et al. | Data & Knowledge Engineering 59 (2006) 652—680 653

belongs to I' through paths spelling a string of the language defined by the regular expression r”. However, this
kind of navigational query is not completely satisfactory since in many cases we would like to express queries
verifying whether the graph has a given structure (e.g. a tree or a chain), or we need to extract from the input
graph not simply a set of nodes, but a complex subgraph satisfying a given property [7,20,24].

Example 1. Consider the labeled rooted graph shown in Fig. 1, where some pieces of information about a
collection of books are represented.

In the above graph, book details (name and surname of authors, title, publisher) are represented by labels
associated with leaf nodes, whereas edge labels describe the type of information contained in the descending
“subtree”’. For instance, any sub-tree identified by an edge with label “written_by’ contains information about
the book authors.

Assume now that we want to extract the sub-trees corresponding to the books written by Ullman. We could
use path queries to extract separately all the pieces of the available information about the desired book, but we
cannot use path queries to extract the desired information preserving its structure. That is, we could extract
the titles of all Ullman’s books (““A First course in Database Systems”, ““ Principles of Databases and Knowledge
Systems”) by means of the path query ({“Ullman}, surname.author.written_by.title), and extract their
publishers by means of the path query ({““Ullman™}, surname.author.written_by.pub). But the information
returned by the former query is disjoint from the information returned by the latter one. As path queries
return sets of nodes, we are not able to reconstruct the correspondence between titles and publishers. It is
worth noting that if the rooted graph is replaced by an acyclic rooted digraph (tree), even the single pieces of
information cannot be extracted, as arcs cannot be navigated from the destination node to the source node.

In order to overcome the limited expressive power of path queries, without completely renouncing to their
simplicity and declarative nature, some languages (such as XQuery [27]) embed the path query mechanism into
a more general and more expressive query paradigm. However this result in procedural query languages mak-
ing query specification rather complex. Our proposal consists in a framework for defining graph patterns
which can be used to extract information from the input graph. A pattern is a graph which defines the shape
(or, more generally, structural properties) and the content of the subgraph to be extracted from the input
graph. An example of pattern (called query graph) is shown on the left-hand side of Fig. 2. Such a query graph
defines a class of graphs to be matched on the input data graph, where labels associated with nodes may be
specific (e.g. “Ullman”) or generic (e.g. $n). The matching between any graph in the class defined by the
query graph with the input data graph permits us to extract portions of the graph of Fig. 1 corresponding
to Ullman’s books. Node labels whose first symbol is $ are used to define variables: the node with label $u
“extracts” the name of Ullman, nodes with label $n, $s are associated with the name and the surname of pos-
sible Ullman’s co-authors, whereas nodes with label $t, $p are associated, respectively, to the title and the
publisher of each Ullman’s book. The two sub-graphs extracted by means of this pattern, containing the avail-
able information about the two books written by Ullman, are shown on the right-hand side of Fig. 2.

“ Prentice Hall ” “CS Press”

“ A4 First Course in
Database Systems

“ Modern Graph ~ * Springer”
Theory”

“ Principles of Database
and
Knowledge-Base Systems ™

%(“
“Jeffrey” “Ullman” “Jennifer” “Widom” “Jeffrey” “Ullman” “Béla” “ Bollobas

Fig. 1. A tree containing some information about books.

Download English Version:

https://daneshyari.com/en/article/379457

Download Persian Version:

https://daneshyari.com/article/379457

Daneshyari.com

https://daneshyari.com/en/article/379457
https://daneshyari.com/article/379457
https://daneshyari.com

