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a b s t r a c t

We consider the case of a digital product for share-averse bidders, where the product can be sold to mul-
tiple buyers who experience some disutility from other firms or consumers owning the same product. We
model the problem of selling a digital product to share-averse bidders as an auction and apply a Bayesian
optimal mechanism design. We also design constant-approximation algorithms in the prior-free setting
including both average- and worst-case analyses.

� 2013 Elsevier B.V. All rights reserved.

1. Introduction

Consider the problem of selling a valuable piece of information
or dataset. In principle, the information or dataset can be sold to all
bidders at no marginal cost to the seller. In general, many digital
goods share the same property. In other words, digital goods are
expensive to produce but cheap to reproduce, since the unit cost
of reproduction is negligible and virtually zero. They can be con-
sumed by more than one user at the same time. However, in real-
ity, the value of the information or dataset to a bidder decreases as
increasing numbers of bidders obtain the information because the
competitive advantage of possessing the information becomes
weaker with more receivers of the information. The seller needs
to know:

1. What is the optimal number of copies, k that they should sell
to?

2. What is the profit maximizing price to charge the k buyers?

Digital product is available in unlimited supply. The firm can
sell as many copies as there are buyers. On the other side of this
tug-of-war, each of the buyers that obtains a copy incurs some dis-
utility from others obtaining the same product. This indicates that
the buyers are willing to pay less if more copies are sold. This
represents the basic trade-off to the seller. Since the firms can sell
to multiple parties who obtain some disutility from sharing, we
call this a digital product with share-averse bidders.

We model this example as an auction. The possible setup is
selling either to an individual buyer (standard single item
auction) or to multiple buyers depending upon the valuations of
all buyers. We introduce a deterministic function to capture the
decreasing valuations when sharing the product. To make the
problem tractable, we assume that this deterministic function is
known to all bidders and hence it is not part of bidder’s private
information. This assumption implies a single-parameter auction.
A distinct attribute of our problem is the task of modeling the
number of winners. This can be computed by applying the VCG
auction on the virtual values in the Bayesian setting. We apply
the well-known Myerson mechanism for maximizing the
expected revenue in the Bayesian setting where the values are
drawn from a prior distribution. Unlike an auction for standard
physical goods, the number of items sold or the number of win-
ners cannot be determined in advance in the auction for digital
goods with share-averse bidders. We need to use the prior distri-
bution to compute the number of winners in this auction. In
prior-free settings, it is challenging to model the number of win-
ners. We study prior-free auctions and establish the approxima-
tion ratio in both average- and worst-cases of the appropriately
designed algorithms. We design an algorithm in the prior-free
average case where the number of winners can be obtained by
the VCG auction on bids. The proposed algorithm approximately
maximizes the revenue against a certain benchmark. The algo-
rithm provides good techniques to handle the prior-free approxi-
mations and to resolve the issue of coping with the number of
winners. We design another prior-free auction/algorithm in the
worst case where the bidders are divided into sample and market
groups and the number of winners is determined by computing
the winning price from the sample group.
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We first show a single-sample approximation algorithm in the
prior-free average case where the revenue benchmark is the ex-
pected optimal revenue as shown in the Bayesian setting. By sin-
gle-sample, we mean that the algorithm is developed over only
one sample of bids from all bidders. The average case analysis can
be used to compare the revenue performance in this prior-free set-
ting with the Bayesian optimal revenue. The second prior-free
approximation algorithm designed is a random sampling algorithm
in the worst case. The benchmark in the second approximation algo-
rithm is the revenue of the optimal single price auction. The optimal
single price auction is optimal among all auctions where the price by
which the winners need pay is unique. In other words, in the optimal
single price auction the winners pay the same price. The worst case
approximation is more challenging since the approximation ratio is
applied to every possible realization of valuations.

An important contribution of our work is the design of prior-
free algorithms for auctioning digital goods with share-averse bid-
ders. The single-sample algorithm is a constant-approximation
algorithm to the revenue benchmark. In the single-sample auction,
the number of winners is a decision variable. Another major contri-
bution of this work is the technique to deal with the number of
winners in a complicated single-parameter auction setting. We
need to sacrifice the revenue performance for determining the
number of winners in the approximations. For example, in the
prior-free worst-case analysis, determining the number of winners
makes the approximation even less ‘‘optimal’’ in comparison with
the standard single-parameter problem without shareability. This
is not a problem in the standard single-parameter auction because
of the indivisible nature of standard products.

2. Literature review

We mainly differentiate auctions by two features: externality
and shareability, see Fig. 1. By externality, we mean the allocation
externality where a party obtaining the product influences the
remaining parties. Shareability is the property of one unit of the
product consumed by more than one party at the same time. At
the top level, we divide auctions by prior distributions: Bayesian
auctions with known prior distributions and prior-free auctions
without any prior distributions. The traditional approach to auc-
tion design is to study optimal auctions (i.e., revenue-maximizing
auctions) in the Bayesian setting, Myerson (1981). There are cases
in the Bayesian setting where shareability has been taken into
account, e.g., the patent licensing. The problem of licensing an
innovation to firms that are competitors in a downstream market
has been well studied. Kamien (1992) provides an excellent survey
of patent licensing. Katz and Shapiro (1986) show a licensing game
in which the bidders are identical and their signals are publicly
observable. In our work, bidder’s signal of willingness to pay is
private. Schmitz (2002) analyzes a revenue-maximizing auction
for a sale of multiple licenses where each bidder’s signal is private.
All these papers assume no allocation externality, i.e., a firm who
gets a license does not affect other firms obtaining no licenses.
Our study adds allocation externality into the setting. Our work
is also related to the literature on sales with externality. Both Jehiel
et al. (1996) and Jehiel and Moldovanu (2000) discuss auctions
with externality. However, neither considers the shareability of a
product at the same time, i.e., it is impossible to share the product
in the auction. We allow multiple bidders to share a product. Salek
and Kempe (2008) is closest to our work. They study auctions in
which items being auctioned can be shared among multiple
winners, and the valuation of winners decreases in the number
of winners. They exhibit an optimal truthful auction for a single
item in the sense of Myerson. We advance this by studying the
prior-free auctions. In addition, in the Myerson’s setting our model

is different because we do not allow fractional allocations. On the
flip side of externality, i.e., positive externality or share-attraction,
Haghpanah et al. (2011) and Bhalgat et al. (2012) show how to
model bidder’s preference regarding positive externality in a social
network setting.

Literature on prior-free auction design, the focus of our work, is
rare. In practice, the Bayesian approach is restrictive since the prior
distribution is usually unknown. A prior-free mechanism design
improves understanding of the auction without the assumption
of prior distributions. Goldberg et al. (2006) investigate such a
prior-free mechanism design problem where the monopolist has
a constant marginal cost of supplying units. They completely
eliminate the prior distribution assumption in their analysis.
Dhangwantnotai et al. (2010) propose single-sample approxima-
tions for a prior-free mechanism design. We apply the single-
sample techniques to the auctions for digital goods with
share-averse bidders and analyze their performance.

The paper is structured as follows. In Section 3 we state the
model for auctioning digital goods with share-averse bidders and
show the Bayesian optimal mechanism design in Section 4. We
then focus on the approximation algorithms and their analysis in
Section 5. We conclude the introduction with a literature review.

3. Model

We model the sales of a digital good with share-averse bidders by
an auction. In the models that follow we use the following notation.
We use bold letters to denote vectors. LetN be the set of all bidders
and n be the total number of bidders, i.e., jN j ¼ n. Let v ¼ ðv1; . . . ;vnÞ
be the vector of strict valuations of all bidders for the single digital
good with share-averse bidders. Namely, v i is the valuation of bidder
i as the individual winner and v i is drawn from continuous distribu-
tion Gi, which we assume are i.i.d. Let gð�Þ be the corresponding
probability density function of G ¼ Gi. We denote by
v�i ¼ ðv1; . . . ;v i�1;v iþ1 . . . ;vnÞ the mask vector after removing
bidder i’s value and v�i�j ¼ ðv1; . . . ;v i�1; v iþ1; . . . ;v j�1;v jþ1; . . . ;vnÞ
the mask vector after removing both bidder i and j’s values. Similarly,
we denote the joint distribution function without bidder i by mask
vector G�i. We assume that the distribution has the monotone haz-
ard rate property, i.e., hð�Þ ¼ gð�Þ

1�Gð�Þ is increasing. We denote

/ðv iÞ ¼ v i � 1�Gðv iÞ
gðv iÞ

as the virtual value. Let f ð�Þ : Z! R be a decreas-

ing function such that 0 6 f ð�Þ 6 1. This function models the disutil-
ity a bidder obtains from the product being shared with other
bidders. For example, if the auction awards 2 copies of the product,
then the value to agent i is v i � f ð2Þ. Since we have a finite number
of bidders, there exists a (possibly non-unique) optimal number of
bidders k such that the revenue obtained by selling to those k bidders
is greater than any other number. In case of a tie, we always pick the
smaller k. In this setting, we can model bidder’s utility using utility
function uiðv; kÞ ¼ xiðvÞ � v i � f ðkÞ � piðvÞ, where xi 2 f0;1g is the
allocation of an item to agent i or not and pi 2 Rþ is the payment of
bidder i to the seller. Finally, for simplicity we assume that all feasi-
ble allocations are single units, i.e., there is no additional utility in a
bidder receiving multiple copies or a fraction of a copy. This is a
reasonable assumption for digital goods with share-averse bidders,
given that they are allocated as discrete units.

We denote by

Qiðv iÞ ¼
Z

v�i

xiðvÞf
X

j

xjðvÞ
 !

dG�iðv�iÞ

the conditional allocation to bidder i by which we model the
incentive constraint in the Bayesian setting. The seller’s problem
is to determine a subset S #N of bidders to allocate to while
maintaining the Bayesian incentive constraint and individual
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