
A hybrid quantum particle swarm optimization
for the Multidimensional Knapsack Problem

Boukthir Haddar a,n, Mahdi Khemakhemb, Saïd Hanafi c, Christophe Wilbaut c

a LOGIQ ISGI, University of Sfax, Sfax, Tunisia
b Prince Sattam Bin Abdulaziz University, Al-Kharj, Riyadh, Saudi Arabia
c LAMIH UMR CNRS 8201, University of Valenciennes, Valenciennes, France

a r t i c l e i n f o

Article history:
Received 14 January 2016
Received in revised form
5 April 2016
Accepted 14 May 2016

Keywords:
Combinatorial optimization
Hybrid heuristic
Multidimensional Knapsack Problem
Particle swarm optimization

a b s t r a c t

In this paper we propose a new hybrid heuristic approach that combines the Quantum Particle Swarm
Optimization technique with a local search method to solve the Multidimensional Knapsack Problem.
The approach also incorporates a heuristic repair operator that uses problem-specific knowledge instead
of the penalty function technique commonly used for constrained problems. Experimental results ob-
tained on a wide set of benchmark problems clearly demonstrate the competitiveness of the proposed
method compared to the state-of-the-art heuristic methods.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

In this paper we are dealing with the NP-hard 0–1 Multi-
dimensional Knapsack Problem (MKP), which seeks to find a
subset of items that maximizes a linear objective function while
satisfying a set of linear capacity constraints. This problem can be
formulated as follows:

{ }
{ }

()

∑

∑ ≤ ∀ ∈ =

∈ { } ∀ ∈ =

=

=

⎧

⎨
⎪⎪

⎩
⎪⎪

c x

a x b i M m

x j N n

MKP

max

subject to: , 1 ,...,

0, 1 , 1 ,...,

j
n

j j

j
n

ij j i

j

1

1

where = { … }N n1, , is the set of items, and = { … }M m1, , is the set
of knapsack constraints with capacities bi (∈i M). Each item ∈j N
yields cj units of profit and consumes a given amount of resource aij for
each knapsack ∈i M . The MKP coefficients are all non-negative in-
teger values (∈ c n, ∈ ×a m n, ∈ b m) and there are usually few
constraints compared to the number of variables (i.e., ⪡m n).

Many practical engineering design problems can be formulated
as the 0–1 MKP, such as, cutting stock (Gilmore and Gomory, 1966),
project selection (Petersen, 1967), cargo loading problems (Shih,
1979), capital budgeting (Weingartner, 1966), databases and pro-
cessor allocation in distributed systems (Gavish et al., 1982) or the

daily management of a satellite (Vasquez and Hao, 2001). Given
the practical and the theoretical importance of the 0–1 MKP, this
problem has been widely studied and solved by many exact as well
as heuristic methods. The reader is referred to Freville (2004),
Puchinger et al. (2010) and Varnamkhasti (2012) for a compre-
hensive and recent annotated bibliography.

Exact methods include dynamic programming (Gilmore and Gom-
ory, 1966; Green, 1967; Weingartner and Ness, 1967), hybrid dynamic
programming methods (Bertsimas and Demir, 2002; Balev et al., 2008;
Wilbaut et al., 2006), branch and bound algorithms (Fayard and Plateau,
1982; Gavish and Pirkul, 1985; Vimont et al., 2008; Mansini and Sper-
anza, 2012) and hybrid approaches combining constraint programming
and integer linear programming (Oliva et al., 2001; Boussier et al., 2010).
The major drawback of these methods remains the temporal com-
plexity when dealing with large instances. Therefore, many researchers
focus on heuristic and meta-heuristic search methods which can pro-
duce solutions of good qualities in a reasonable amount of time. Re-
levant methods include tabu search (Vasquez and Hao, 2001; Dam-
meyer and Voss, 1993; Glover and Kochenberger, 1996; Hanafi and
Freville, 1998; Vasquez and Vimont, 2005), genetic algorithm (Chu and
Beasley, 1998; Berberler et al., 2013; Martins et al., 2014), simulated
annealing (Leung et al., 2012; Rezoug et al., 2015), ant colony optimi-
zation (Parra-Hernandez and Dimopoulos, 2003; Kong et al., 2008; Ke
et al., 2010; Fingler et al., 2014), filter-and-fan algorithm (Khemakhem
et al., 2012), particle swarm optimization (Kong et al., 2006; Wan and
Nolle, 2009; Chen et al., 2010; Ktari and Chabchoub, 2013; Tisna, 2013;
Beheshti et al., 2013; Chih, 2015) and so on.

In this paper, we propose an efficient hybrid heuristic approach
to solve the 0–1 MKP that effectively combines a relatively recent

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2016.05.006
0952-1976/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: boukthir.haddar@gmail.com (B. Haddar),

m.khemakhem@psau.edu.sa (M. Khemakhem),
said.hanafi@univ-valenciennes.fr (S. Hanafi),
christophe.wilbaut@univ-valenciennes.fr (C. Wilbaut).

Engineering Applications of Artificial Intelligence 55 (2016) 1–13

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.05.006
http://dx.doi.org/10.1016/j.engappai.2016.05.006
http://dx.doi.org/10.1016/j.engappai.2016.05.006
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.05.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.05.006&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.05.006&domain=pdf
mailto:boukthir.haddar@gmail.com
mailto:m.khemakhem@psau.edu.sa
mailto:said.hanafi@univ-valenciennes.fr
mailto:christophe.wilbaut@univ-valenciennes.fr
http://dx.doi.org/10.1016/j.engappai.2016.05.006

evolutionary computation technique, the Quantum Particle Swarm
Optimization (QPSO), with a local search method. We propose to
use QPSO in combination with a heuristic repair operator utilizing
problem-specific knowledge, instead of the penalty function tech-
nique usually used to avoid the violation of problem constraints. We
apply this repair operator to amend infeasible solutions or to im-
prove feasible solutions. In this way, it ensures that the search
process will be always guided through a feasible solution space.

The aim of this work is twofold: (i) To investigate the effective-
ness of an improved QPSO algorithmwhen dealing with an NP-hard
combinatorial optimization problem such as the 0–1 MKP. (ii) To
suggest an efficient hybrid approach that combines QPSO with a
local search method in the aim to benefit from the good exploitation
(intensification) of the search space offered by a local search method
algorithm and the good exploration (diversification) and the fast
convergence of the modified QPSO method. Note that the proposed
hybrid method remains valid for 0–1 integer programming pro-
blems. Special attention should be given to the ways the problem-
specific information could be applied into some repair operators.

The remainder of this paper is organized as follows. Section 2
describes the basic features of the classical particle swarm opti-
mization (PSO) technique for continuous optimization and then
reviews the fundamental principles of the Binary PSO method
(BPSO). Section 3 introduces our QPSO algorithm to solve the 0–
1 MKP, whereas Section 4 describes the specific MKP repair op-
erator. Section 5 describes the local search to repair infeasible
solutions and to improve feasible solutions. Section 6 presents and
discusses the experimental results obtained over a wide set of
benchmark problems. Section 7 concludes with a summary of
major results and suggestions for future researches.

2. Particle swarm optimization

The Particle Swarm Optimization (PSO) algorithm is a global
optimization heuristic method originally introduced by Kennedy
and Eberhart in 1995 (Kennedy and Eberhart, 1995). It exploits the
concept that the knowledge needed for the search of an optimal
solution can be modeled on the basis of observed social behavior.

In the original continuous PSO version, we consider a swarm
{ }= …S p1, , of p particles in a n-dimensional continuous solution

space. Those particles are initially placed randomly on the search
space and are actively searching for an optimal solution to the
problem by updating individual generations. Each particle ∈s S of
the swarm is associated with a vector xs that represents a potential
solution to the problem and with a velocity vector vs that gives the
rate of change for the position of a given particle at the next
iteration. During the search procedure, each particle commu-
nicates with its neighbors and tends to move toward the best
position (solution) found. The velocity and the position of each
particle s are updated according to its best previous solution *x s

and to the best solution so far found for the swarm #x . The fol-
lowing equations are used to iteratively update particles’ velocities
and solutions:

γ γ γ= × + × × (* −) + × × (−) ∀ ∈ ()#v v r x x r x x j N, 1j
s

j
s

j j
s

j
s

j j j
s

1 2 3

= + ()x x v 2s s s

Coefficient γ1 in Eq. (1) refers to the inertia factor, γ2 and γ3
refer to the learning factors or accelerated variables and = ()r rj to
a random vector obtained from a uniform distribution in []0, 1 n

for each particle dimension. To avoid divergence, the value of vjs

is generally limited to a maximum value Vmax and a minimum
value −Vmax, i.e., ∈ −⎡⎣ ⎤⎦v V V,j

s
max max , ∀ = …j n1, , .

PSO has been originally developed for continuous nonlinear
optimization where velocity and position are represented as real

values (see Abraham et al., 2006; Kennedy, 2000). It is, therefore,
not able to deal with a binary combinatorial optimization problem,
such as the MKP. Accordingly, in Kennedy and Eberhart (1997)
proposed a binary version of PSO, termed Binary PSO, to tackle
problems with binary variables. This version uses the concept of
velocity as a probability that a bit (position) takes on a value of “0”
or “1”. A sigmoid function is then used to transform all real valued
velocities to the range []0.0, 1.0 . The velocity updating formula
remains unchanged as defined in Eq. (1), with *x s and #x being
integers in { }0, 1 n in binary case.

The variable updating rule is, however, re-defined by the fol-
lowing equation:

=
<

+ (−) ∀ = …

()

⎧
⎨⎪
⎩⎪

x
r

exp v j n
1 if

1
1

0 otherwise

1, , .

3
j
s j

j
s

As the optimization ability of the standard BPSO is not ideal (Ne-
zamabadi-pour et al., 2008; Engelbrecht, 2005; Pampara et al.,
2005; Khanesar et al., 2007), several enhanced versions of this
approach have been proposed during the last few decades. Some
of these proposals have studied other neighborhood topologies
(Kennedy, 2000; Clerc, 2006; Mohais et al., 2005) and (Parrott and
Li, 2006) while others have tried to introduce different techniques
to simulate particle flights by direct sampling using a random
number generator with a certain probability distribution (Pampara
et al., 2005; Langeveld and Engelbrecht, 2012; Kennedy, 2003; Sun
et al., 2004) and (Sun et al., 2004). The Quantum PSO represents
one of the most efficient versions due to its effective global search
ability and out-performance on several optimization problems as
demonstrated in Krohling and dos Santos Coelho (2006).

The following section will describe the basic components of the
discrete PSO algorithm which we use to solve the 0–1 MKP. Some
of the concepts applied derive from the quantum PSO algorithm
proposed in 2004 by Yang et al. (2004), which has been slightly
modified and extended to fit the 0–1 MKP. The next section will
then discuss the advantages of incorporating a heuristic repair
operator that uses problem-specific knowledge into the modified
algorithm to amend the potential generation of infeasible
solutions.

3. Quantum particle swarm optimization for the 0–1 MKP

In the QPSO algorithm, a particle is probabilistically re-
presented as a quantum vector in which a value of a given single
bit (qubit) could be in the “1” or “0” state, or in any superposition of
both states (see Hey, 1999).

A quantum particle swarm Y at iteration k is defined as:

{ }() = () () … () () ∈ [] ∀ ∈ ()Y k y k y k y k y k s S, , , with 0, 1 . 4p s n1 2

The value ()y kj
s in Eq. (4) denotes the probability of the jth bit of

the sth particle to be in the “0” state. Then, a quantum particle
vector is transformed into a discrete particle vector

{ }() = () () … () () ∈ { } ∀ ∈X k x k x k x k x k s S, , , with 0, 1 ,p s n1 2 , based on
the following rule:

() =
> ()

∀ = …
()

⎪

⎪⎧⎨
⎩x k

r y k
j n

1 if

0 otherwise
1, , .

5
j
s j j

s

where ∈ []r 0, 1j is a random number. Once the rule to obtain a
discrete particle swarm from a quantum one is known, the evolu-
tion of the quantum particle can be defined according to the pro-
positions described in Yang et al. (2004):

α β() = × () + × (− ()) ()# # #y k x k e x k 6

B. Haddar et al. / Engineering Applications of Artificial Intelligence 55 (2016) 1–132

Download English Version:

https://daneshyari.com/en/article/380147

Download Persian Version:

https://daneshyari.com/article/380147

Daneshyari.com

https://daneshyari.com/en/article/380147
https://daneshyari.com/article/380147
https://daneshyari.com

