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a b s t r a c t

In real structural systems, such as a building structure or a mechanical system, due to inherent structural
modeling approximations and errors, and changeable and unpredictable environmental loads, the
structural response unavoidably involves uncertainties. These uncertainties can reduce the performance
of a control algorithm significantly and possibly make it unstable. In this paper, based on the theories of
the Bounded Real Lemma and the linear matrix inequalities (LMI), a novel discrete-time robust H2/H1
control algorithm is presented which not only reduces the structural peak response caused by external
dynamic forces but also is robust and stable in the presence of parametric uncertainties which is always
the case in real-life structures. To facilitate practical implementation, the uncertainties of structural
parameters are considered in the time domain as opposed to the frequency domain. Compared with
traditional H1 control methods, the new control algorithm proposes a convenient design procedure to
facilitate practical implementations of active control of complex and large structural systems through the
use of a quadratic performance index and the LMI-based solution method. The effectiveness of the new
discrete-time robust H2/H1 adaptive control algorithm is demonstrated using a three-story frame with
active bracing systems (ABS) and a ten-story frame with an active tuned mass damper (ATMD).

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Reducing the peak response quantities such as displacements
and accelerations of structures subjected to external dynamic
loads is of primary concern in design of large structures. The most
recent design strategies focus on methods of structural vibration
control (Adeli and Saleh, 1999; Adeli and Jiang, 2009; Adeli and
Kim, 2009). These methods are divided into passive control such
as the Tuned Mass Damper (TMD) (Gutierrez-Soto and Adeli,
2013a; Andersson et al., 2015), semi-active control (Fisco and
Adeli, 2011a), active control (Kim and Adeli, 2005d; Gutierrez-Soto
and Adeli, 2013b), and hybrid control (Kim and Adeli, 2005b,
2005c; Fisco and Adeli, 2011b) method. Compared to the passive
control system, an active control system has advantages of
adaptability and performance. Moreover, semi-active and hybrid
control strategies which are more practical in terms of im-
plementation are always based on active control algorithms (El-
Khoury and Adeli, 2013).

Over the past few decades many active control algorithms have
been developed such as the linear quadratic regulator (LQR)

(Stavroulakis et al., 2006), linear quadratic Gaussian (LQG) (Wu and
Yang, 2000), sliding mode control (SMC) (Alli and Yakut, 2005; Pai,
2010; Wang and Adeli, 2012, 2015a, 2015b), H1 control (Yang et al.,
1996), proportional–integral–derivative (PID) control (Kang et al.,
2009), model predictive control (Wang et al., 2015), parallel control
(Li et al., 2014), and optimal control algorithm (Adeli and Saleh, 1997;
Saleh and Adeli, 1997, 1998a, 1998b, Li et al., 2015). Adeli and Saleh
(1998, 1999) present an integrated control and optimization strategy
for design of both civil structures and control system. For solution of
the integrated control and optimization Saleh and Adeli (1994) pre-
sent parallel algorithms on high-performance parallel machines
(Adeli and Kamal, 1993) and supercomputers (Adeli and Soegiarso,
1999). A review of recent advances on vibration control of structures
under dynamic loading is presented by Khoury and Adeli (2013)

In real structures, due to inherent structural modeling ap-
proximations and errors, and changeable and unpredictable en-
vironmental loads, the structural system response unavoidably
involves uncertainties. These uncertainties can reduce the perfor-
mance of a control algorithm and possibly make it unstable. In the
presence of structural parameters uncertainties traditional control
methods do not provide the stability and robustness needed for
effective reduction of the structural response under unknowable
and varying external dynamic loading conditions. They can
affect the structure adversely when the frequency of external
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disturbance is close to the natural frequency of the structure. Kim
and Adeli (2004a,b) developed a hybrid feedback-least mean
square (LMS) algorithm and an improved wavelet-hybrid feed-
back-LMS algorithm to suppress both steady and transient vibra-
tions effectively. They demonstrated their effectiveness for sig-
nificant vibration reduction in both irregular highrise building
(Kim and Adeli, 2005a) and bridge structures (Kim and Adeli,
2005d).

Based on the merits of neural networks and fuzzy logic meth-
ods for system identification (Boutalis et al., 2013; Rigatos, 2013),
Jiang and Adeli (2008a, 2008b) present a dynamic fuzzy wavelet
neuroemulator to predict the structural response, and then obtain
the optimal control forces using the genetic algorithm. Amini and
Zabihi-Samani (2014) present a time varying wavelet-based pole
assignment (WPA) method to control the seismic response of a
building structure. However, the uncertainties of the structural
parameters, such as stiffness, damping, and mass, are not taken
into account in any of these methods.

A key issue in practical implementation of the vibration control
technology is the robustness of the control algorithm in the presence
of uncertainty which is the subject of this paper. H1 control is a
popular control algorithm in the area of robust control that requires
the solution of the Riccati equation (Saleh and Adeli, 1997; Zhou and
Doyle, 1998) which is time consuming in terms of computing. A few
researchers have used the H1 control for vibration control of struc-
tures based on the continuous time system. Yang et al. (1996) show
that the H1 control method is effective for reducing the seismic re-
sponse of building structures but do not consider uncertainties of
structural parameters in the formulation. Calise and Sweriduk (1998)
describe an H1 control method based on the frequency domain but
the uncertainties of structural parameters cannot be described easily
in the frequency domain. Wang et al. (2004) present an H1 con-
troller taking into account the norm-bounded uncertainties of
structural parameters through solving a Riccati equation and
choosing a set of flexible scalars. Simulation results show the effec-
tiveness of the algorithm with a perturbation of 10% for mass, stiff-
ness and damping coefficients. However, solving the resulting Riccati
equation with excessive flexible scalars can be problematic and the
performance of the control algorithm with a relatively high pertur-
bation can deteriorate. The aforementioned H1 control methods all
require the solution of the Riccati equation.

An effective approach for solution of the Riccati equation is ap-
plication of the linear matrix inequalities (LMI) (Gahinet and Apkar-
ian, 1994). Du et al. (2004), Wu et al. (2006), and Du et al. (2011) used
an LMI-based solution approach for design of H1 controllers. Chang
(2005) designed a mixed H2/H1 control algorithm based on the fre-
quency domain and applied it to the gap control of the electric dis-
charge machines. Guimaraes et al. (2007) proposed an immune-based
H2/H1 controller. Yang et al. (2014) used a mixed H2/H1 control al-
gorithm to control the temperature of the four-zone split inverter air
conditioners. These methods, however, have shortcomings because
either they do not consider the structural parameter uncertainties in
their formulation or deal with them in the frequency domain which
makes their application to real structures difficult.

Since real-life control systems are modeled as a discrete-time
system, an operational discrete-time robust control algorithm is of
paramount importance for practical implementation of vibration
control of structures with uncertainties. In this paper, a novel
discrete-time robust H2/H1 control algorithm is presented for vi-
bration control of structures subjected to dynamic loading such as
strong ground motions taking into account the uncertainties in
modeling the structure based on the theories of the Bounded Real
Lemma (Zhou and Doyle, 1998) and using the LMI approach (Boyd
et al., 1994). To facilitate practical implementation, the un-
certainties of structural parameters are considered in the time
domain as opposed to the frequency domain. The H1 approach is

employed to achieve stability. To increase the effectiveness of the
control algorithm it is integrated with an H2 algorithm where a
quadratic performance index is used to evaluate and compare the
performance of the control system. The effectiveness of the new
discrete-time robust H2/H1 control algorithm is demonstrated
using a three-story frame with active bracing systems (ABS) and a
ten-story frame with an active tuned mass damper (ATMD).

2. Modeling of uncertainty in the control equations

The dynamic equation of motion for an n-Degree-of-Freedom
(DOF) structure subjected to one-dimensional ground acceleration

( )w t and active control forces is described as follows:

¨ + ̇ + = − ¯ ( ) + ( ) ( )w t tMX CX KX MI B U 1s

where X is the column vector of displacements relative to the
ground, M¼diag[m1, m2, …, mn] is the diagonal mass matrix, K
and C are n�n stiffness and damping matrices, respectively, Bs is
the n� r control device location matrix, r is the number of active
control devices, ( )tU is the r-dimensional vector of control forces,
and Ī is an n�1 vector whose values are all equal to one.

In this research uncertainties of the structural parameters are
described through perturbations of the parameters. As such, the
dynamic equation of the structure with uncertainties can be de-
scribed in the following manner:
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where ΔM, ΔK , ΔCand ΔBS are corresponding perturbations pre-
scribed using a preselected scalar δ< <0 1i so that

Δ δ< ≤ <M0 / 1Mi i i which can guarantee Δ+M M is non-singular.
Consequently, the uncertainty ΔM satisfies the following bound
where δ is an n�n diagonal matrix with terms δi in the diagonal
(δi is chosen according to amplitude of uncertainty ΔM):

Δ δ‖ ‖ ≤ ‖ ‖ < ( )−M 1 3M
1

To avoid the problematic inversion of Δ+M M, consider two
different scalar matrices δ and δ′, and assume the following re-
lationship holds: δ δ( + )( + ′) =I I I. Then, Eq. (2) can be rearranged
as follows:
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Following the state space representation, Eq. (4) can be ex-
pressed in the following form:

Δ Δ̇ ( ) = ( + ) ( ) + ( + ) ( ) + ( ) ( )t t t w tZ A A Z B B U H 5

where
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Because the control system expressed by Eq. (5) is linear and
time-invariant, the following analytical solution is obtained (Zhou
and Doyle, 1998):
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