
Online learning for optimistic planning

Lucian Buşoniu a,n, Alexander Daniels b, Robert Babuška b

a Department of Automation, Technical University of Cluj-Napoca, Romania
b Delft Center for Systems and Control, Delft University of Technology, the Netherlands

a r t i c l e i n f o

Article history:
Received 10 July 2015
Received in revised form
29 January 2016
Accepted 9 May 2016

Keywords:
Optimal control
Machine learning
Markov decision processes
Optimistic planning
Near-optimality analysis

a b s t r a c t

Markov decision processes are a powerful framework for nonlinear, possibly stochastic optimal control.
We consider two existing optimistic planning algorithms to solve them, which originate in artificial
intelligence. These algorithms have provable near-optimal performance when the actions and possible
stochastic next-states are discrete, but they wastefully discard the planning data after each step. We
therefore introduce a method to learn online, from this data, the upper bounds that are used to guide the
planning process. Five different approximators for the upper bounds are proposed, one of which is
specifically adapted to planning, and the other four coming from the standard toolbox of function ap-
proximation. Our analysis characterizes the influence of the approximation error on the performance,
and reveals that for small errors, learning-based planning performs better. In detailed experimental
studies, learning leads to improved performance with all five representations, and a local variant of
support vector machines provides a good compromise between performance and computation.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Markov decision processes (MDPs) are often used to model
sequential decision-making problems in artificial intelligence
(Sutton and Barto, 1998; Sigaud and Buffet, 2010), but also work
for optimal control problems in engineering, economics, opera-
tions research, medicine, etc. (Bertsekas, 2012). Online planning
methods solve MDPs locally, by using a model to run an ex-
plorative search through the space of solutions (e.g. action
sequences) from the current state, after which a first action is
selected and applied. The system then reaches its new state and
the process is repeated. A computationally effective strategy is to
search the solution space optimistically (Munos, 2014), focusing on
regions most likely to contain an optimal solution. The resulting
optimistic planning (OP) algorithms (Munos, 2014; Buşoniu et al., 2012)
integrate insights from several fields of artificial intelligence: re-
inforcement learning, bandit theory, and planning/graph search
(Bertsekas, 2012; La Valle, 2006), as well as from optimization.
A variety of OP methods are available, including Upper Confidence
Trees (Kocsis and Szepesvári, 2006) which produced a competitive
Go player (Gelly et al., 2006), OP for Deterministic systems (OPD)
(Hren and Munos, 2008), OP for stochastic MDPs with discrete
next-state distributions (OPMDP) (Buşoniu and Munos, 2012) or
with general distributions (Bubeck and Munos, 2010), OP for

continuous actions (Weinstein and Littman, 2012; Buşoniu et al.,
2013a), etc.

We focus here on OPD and OPMDP, which explore a tree re-
presentation of the possible solutions from the current state. Every
node on the planning tree is labeled by a state and an upper bound
(called b value) on that state's optimal value. Exploiting the b va-
lues, at each iteration the algorithms refine further an optimistic
partial solution, with the largest upper bound on the value. OPD
and OPMDP guarantee near-optimality bounds as a function of the
computation invested (Hren and Munos, 2008; Buşoniu and Mu-
nos, 2012). We refer to both algorithms collectively as ‘OP’.

An important drawback of OP methods in their original form is
that they discard the current tree right after applying the current
action, and start over from scratch at the next step. However, the
trees at consecutive steps will cover similar states, so the data can
be reused to improve the quality of the search. Therefore, in this
paper we propose to reuse data by learning online a b function
from the state–b value pairs on the trees developed at previous
steps. At the current step, the b function learned in this way is
used to initialize newly created leaves with informed b values,
rather than the uninformed values used in the original OP. The
resulting approach is called OP with learning (L-OP). We provide a
general analysis of the planning performance with learned b va-
lues, taking into account the tradeoff between two novel effects
that did not appear in standard OP: the b values are closer to the
optimal values than in OP (improving performance) – but due to
approximation errors, they may no longer be true upper bounds
and some nodes may be expanded non-optimistically (decreasing
performance).

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/engappai

Engineering Applications of Artificial Intelligence

http://dx.doi.org/10.1016/j.engappai.2016.05.003
0952-1976/& 2016 Elsevier Ltd. All rights reserved.

n Corresponding author.
E-mail addresses: lucian.busoniu@aut.utcluj.ro (L. Buşoniu),

alexanderdaniels87@gmail.com (A. Daniels), r.babuska@tudelft.nl (R. Babuška).

Engineering Applications of Artificial Intelligence 55 (2016) 70–82

www.sciencedirect.com/science/journal/09521976
www.elsevier.com/locate/engappai
http://dx.doi.org/10.1016/j.engappai.2016.05.003
http://dx.doi.org/10.1016/j.engappai.2016.05.003
http://dx.doi.org/10.1016/j.engappai.2016.05.003
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.05.003&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1016/j.engappai.2016.05.003&domain=pdf
mailto:lucian.busoniu@aut.utcluj.ro
mailto:alexanderdaniels87@gmail.com
mailto:r.babuska@tudelft.nl
http://dx.doi.org/10.1016/j.engappai.2016.05.003

We continue by describing several b value approximators. The
first is specific to OP, and given a Lipschitz value function it
guarantees that b values always remain true upper bounds. The
other approximators are standard: neural networks, local linear
regression, and least-squares support vector machines; and for the
latter, we also introduce a local, less computationally intensive
variant. All techniques except neural networks are memory-based,
so a procedure for memory management is additionally provided.
We explain how these techniques can be applied to online L-OP,
discuss their computational complexity, and evaluate them in
practically relevant experiments on deterministic and stochastic
problems. These experiments show that learning can achieve
better performance with less computation, so it is useful for online
control.

The idea of combining learning with model-based algorithms is
well-known, see e.g. Dyna (Sutton, 1990). A variety of related work
can be identified in classical planning by noticing that OPD and
OPMDP extend the An (Hart et al., 1968) and AOn (Nilsson, 1980)
algorithms to infinite-horizon control. The b value in OP plays a
similar role to the heuristic in An and AOn, and deriving good
heuristics is recognized as essential for performance. Heuristics
are often found offline, before planning starts, based e.g. on re-
laxed versions of the problem (Helmert et al., 2007; Yoon, 2006).
Other methods learn heuristics incrementally from consecutive
planning tasks (Thayer et al., 2011; Arfaee et al., 2010; Fink, 2007),
and these have some common elements with our work, such as
generalizing function approximation (Jaillet et al., 2010; Thayer
et al., 2011). Nevertheless, most of these methods compute com-
plete, optimal plans offline, whereas our focus is near-optimally
solving infinite-horizon problems online. Closer to our online
setting are the classical algorithms ‘learning real-time An’ (Korf,
1985) and ‘real-time dynamic programming’ (Barto et al., 1995),
which learn heuristics while planning online. Kolobov et al. (2009)
combined an approximator with RTDP – but this technique works
for goal-based MDPs with logical states, and is not applicable in
our general-MDP setting. Compared to Korf (1985), Barto et al.
(1995), Kolobov et al. (2009), we introduce function approxima-
tion to deal with large, continuous state spaces (as suggested for
RTDP by Barto et al. (1995)), provide a near-optimality analysis in
the context of OP, and a thorough empirical study with several
types of approximators.

Our technique is to our knowledge the first to learn b values
online in optimistic planning. A value function computed offline
was used to improve the performance of the Upper Confidence
Trees algorithm by Gelly and Silver (2007). Our previous work on
OP, such as Buşoniu and Munos (2012), Buşoniu et al. (2013a,
2013b), never uses learning – with a single exception: Fonteneau
et al. (2013), where the model (transition probabilities) is learned
rather than the b values.

Next, Section 2 introduces the optimal control problem and the
two OP methods. Section 3 describes learning for OP, including the
methods for the deterministic and stochastic cases, their analysis,
the five function approximators, and memory management. Sec-
tion 4 gives the experimental results, and Section 5 concludes the
paper.

2. Background

2.1. Problem setting

We consider discrete-time optimal control problems with
states ∈x X and actions ∈u U . When applying uk, the state
changes from xk to +xk 1 with probability ()+f x u x, ,k k k 1 , where

× × → []f X U X: 0, 1 is the state transition function. A reward
function ρ × × → X U X: measures the quality of transitions,

ρ= ()+ +r x u x, ,k k k k1 1 . We assume the following: (i) the state space X
is compact and included in p; (ii) the action space U consists of a
finite number K of actions; (iii) rewards are bounded, and without
loss of generality they are in []0, 1 ; finally, (iv) applying any action
in any state can only lead to a finite number M of possible next
states. These assumptions are typical in artificial intelligence,
where X U f, , and ρ are said to form a Markov decision process
(MDP). In control engineering, (i) is not restrictive in practice,
while action discretization (ii) and reward saturation (iii) reduce
performance, but the loss is often manageable. Deterministic
transitions are common, in which case (iv) holds implicitly;
otherwise, it restricts the random disturbance to discrete phe-
nomena such as switches.

A policy π →X U: describes the control behavior: which action
π= ()u x to apply in each state x. The policy's value →π V X: is

defined for each state x as the expected return obtained by fol-
lowing the policy from x:

∑ ∑γ γ ρ π() = = (())
()

π

=

∞

+
=

∞

+⎪ ⎪ ⎪ ⎪

⎪ ⎪ ⎪ ⎪⎧
⎨
⎩

⎫
⎬
⎭

⎧
⎨
⎩

⎫
⎬
⎭

V x E r E x x x, ,
1k

k
k

k

k
k k k

0
1

0
1

where =x x0 , π∼ (() ·)+x f x x, ,k k k1 , the expectation is taken over
trajectories, and γ ∈ ()0, 1 is the discount factor. Since rewards are
at most 1, an upper bound on any state value under any policy is

γ= ∑ =
γ=

∞
−V k

k
max 0

1
1

. Next to the state value function V, the state-

action value function Q is defined as:

ρ γ() = { (′) + (′)} ()π π
′∼ (·)Q x u E x u x V x, , , 2x f x u, ,

The objective is to optimally control the system, so that the
value function is maximized for all ∈x X . This maximal, optimal
value function is denoted *()V x , an optimal policy that achieves
these values is denoted π*()x , and the corresponding optimal
state-action value function is *()Q x u, . The relationship

*() = *()V x Q x umax ,u holds.

2.2. Optimistic planning for deterministic systems

We focus first on the deterministic case where the transition
function reduces to = ()+x f x u,k k k1 , since a single state +xk 1 is
reached with probability 1; and the reward function to

ρ= ()+r x u,k k k1 , since the next state +xk 1 – and hence the reward –

are fully determined by xk and uk.1

We consider an online model-based planning algorithm called
Optimistic Planning for Deterministic systems (OPD) (Hren and
Munos, 2008), which at each step k explores the set of possible
action sequences from the current state xk. Such sequences are
able to represent an optimal solution local to xk. They are more
general than the state-feedback policies π ()x , which can also re-
present optimal solutions, but sequences are convenient in plan-
ning so we will use them. At a high level, OPD iteratively refines
promising action sequences until a computational budget n, re-
lated to the number of evaluations of the model f, is exhausted.
Based on the return information accumulated about these se-
quences, OPD then chooses an action uk that is as good as possible.
This action is applied to the system and the procedure is repeated
from the new state.

To formalize the algorithm, we relabel by convention the cur-
rent time k to 0, so that xk becomes x0. Of course, the procedure
works at any time step. The planning process can be visualized

1 Here as well as in the sequel (e.g. for the b values), we slightly abuse the
notation by using the same symbols to denote analogous but mathematically dif-
ferent objects in the stochastic and deterministic case. For example, the determi-
nistic ρ ()x u,k k is obtained by plugging +xk 1 in the stochastic reward function,
ρ ()+x u x, ,k k k 1 . It will usually be clear from the context to which variant the text
refers; when it is not, we make it explicit.

L. Buşoniu et al. / Engineering Applications of Artificial Intelligence 55 (2016) 70–82 71

Download English Version:

https://daneshyari.com/en/article/380153

Download Persian Version:

https://daneshyari.com/article/380153

Daneshyari.com

https://daneshyari.com/en/article/380153
https://daneshyari.com/article/380153
https://daneshyari.com

