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a b s t r a c t

Contractor programming relies on a catalog on elementary contractors which need to be as efficient as
possible. In this paper, we introduce a new theorem that can be used to build minimal contractors
consistent with equations, and another new theorem to derive an optimal separator from a minimal
contractor. As an application, we focus on the channeling polar constraint associated to the change be-
tween Cartesian coordinates and Polar coordinates. We illustrate our method on the localization problem
of an actual underwater robot where both range and goniometric measurements of landmarks are
collected.

& 2016 Elsevier Ltd. All rights reserved.

1. Introduction

Contractor programming (Chabert and Jaulin, 2009) is an effi-
cient tool to solve rigorously complex problems involving un-
certainties and nonlinear equations (Ceberio and Granvilliers.,
2001; Kreinovich et al., 1997). A contractor  is an operator able to
contract a box of n without removing a single point of the subset
 of n to which it is associated. As a result, using a paving of n

generated by a paver (Sainudiin, 2010), the contractor will allow us
to build an outer approximation of . Basic notions on interval
analysis, contractors and applications can be found in Jaulin et al.
(2001).

Contractor programming relies on a catalog of elementary
contractors. Most of the time, these elementary contractors are
built using interval arithmetic (Moore, 1966). Then, by combining
all these elementary contractors, we can construct a more so-
phisticated contractor consistent with the solution set of the
problem we want to solve. The principle can be extended to se-
parator programming (Jaulin and Desrochers, 2014) in order to
compute an inner and an outer approximation of the solution set.

Now, combining contractors introduces a pessimism which has
to be balanced by additional bisections performed by the paver.

For more efficiency, it is important to extend the catalog by adding
some new specific contractors.

In this paper, we propose some new theorems in order to build
more easily optimal contractors/separators consistent with equa-
tions often used, for instance, in the field of robotics (Kieffer et al.,
1999; Daney et al., 2006; Langerwisch and Wagner, 2012). As an
application, we will consider the polar constraint associated to the
change of coordinates between Cartesian and polar form (Candau
et al., 2006). This polar constraint is essential for localization of
robots when both goniometric and distance measurements are
available (Colle, 2013; Di Marco et al., 2001). Some test cases will
show that our approach makes it possible to obtain an inner and
an outer approximation of the solution set in a much more effi-
cient manner than simply composing elementary interval
contractors.

This paper is organized as follows. Section 2 presents the no-
tion of contractor and separator algebra. Section 3 shows how a
minimal contractor for some specific constraints can be built.
Section 4 will then derive an optimal separator for the polar
transformation. Section 5 provides an application on the localiza-
tion of an actual underwater robot and Section 6 concludes the
paper.

2. Contractors and separators

This section recalls the basic notions on intervals, contractors
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and separators that are needed to understand the contribution of
this paper. An interval of  is a closed connected set of . A box ⎡⎣ ⎤⎦x
of n is the Cartesian product of n intervals. The set of all boxes of
n is denoted by n. Notations used in this paper are given in
Table 1.

2.1. Contractors and separators

In this section, we recall the basic notions on contractors and
separators that will be used later. A contractor is an operator

↦ n n (see e.g., Di-Loreto et al., 2007) such that

([ ]) ⊂ [ ] ( )
[ ] ⊂ [ ] ⇒ ([ ]) ⊂ ([ ]) ( ) ( )

x x

x y x y

contractance
. monotonicity 1

We define the inclusion between two contractors 1 and 2 as
follows:

⊂ ⇔ ∀ [ ] ∈ ([ ]) ⊂ ([ ]) ( )x x x, . 2n
1 2 1 2

A set  is consistent (see Fig. 1) with the contractor (we will
write ∼ ) if for all [ ]x , we have

([ ]) ∩ = [ ] ∩ ( ) x x . 3

Two contractors and 1 are equivalent (we will write ∼ 1) if
we have:

∼ ⇔ ∼ ( )  . 41

A contractor isminimal if for any other contractor 1, we have the
following implication:

∼ ⇒ ⊂ ( ). 51 1

If is a minimal contractor consistent with , then for all [ ]x , we
have ([ ]) ∩ = ] ∩ x x where  is the hull operator, i.e., the
smallest box which encloses . This means that ([ ])x corresponds

exactly to the smallest box that can be obtained by a contraction of
[ ]x without removing a single point of . As a consequence, there
exists a unique minimal contractor.

Example 1. The minimal contractor  consistent with the set

{ }= ∈ ( − ) + ( − ) ∈ ( )⎡⎣ ⎤⎦ x x x, 2 2.5 1, 4 6
2

1
2

2
2

can be built using a forward-backward constraint propagation
(Benhamou et al., 1999; Drevelle and Bonnifait, 2012). The con-
tractor  can be used by a paver to obtain an outer approximation
for . This is illustrated in Fig. 2 (left) where  removes parts of
the space outside  (painted light-gray). But due to the con-
sistency property (see Eq. (3))  has no effect on boxes included
in . A box partially included in  cannot be eliminated and is
bisected, except if its length is larger than an given value ε. The
contractor  only provides an outer approximation of .

If 1 and 2 are two contractors, we define the following op-
erations on contractors (Chabert and Jaulin, 2009):

( ∩ )([ ]) = ([ ]) ∩ ([ ]) ( )x x x 71 2 1 2

( ⊔ )([ ]) = ([ ])⊔ ([ ]) ( )x x x 81 2 1 2

( )( )([ ]) = ([ ]) ( )o x x 91 2 1 2

where ⊔ is the union hull defined by

[ ]⊔[ ] = [ ] ∪ [ ] ( )x y x y . 10

In order to characterize an inner and outer approximation of
the solution set, we introduce the notion of separator.

A separator is a pair of contractors { },in out such that, for all
[ ] ∈ x n, we have

([ ]) ∪ ([ ]) = [ ] ( ) ( )x x x complementarity . 11in out

A set  is consistent with the separator (we will write ∼ ), if

∼ ∼ ( ) and , 12out in

where = { ∥ ∉ } x x . This notion of separator is illustrated in
Fig. 3. We define the inclusion between two separators 1 and 2

as follows:

⊂ ⇔ ⊂ ⊂ ( )and . 131 2 1
in

2
in

1
out

2
out

A separator is minimal if

⊂ ⇒ = ( ). 141 1

It is trivial to check that is minimal implies that the two con-
tractors in and out are both minimal. If we define the following
operations:

{ }
{ }

∩ = ∪ ∩ ( )

∪ = ∩ ∪ ( ) ( )

, intersection

, union 15

1 2 1
in

2
in

1
out

2
out

1 2 1
in

2
in

1
out

2
out

then we have (Jaulin and Desrochers, 2014)

∼
∼

⇒
∩ ∼ ∩
∪ ∼ ∪ ( )

⎧⎨⎩
⎧⎨⎩





 

  16
1 1

2 2

1 2 1 2

1 2 1 2

Example 2. Consider the set  of Example 1. From the contractor
consistent with

Table 1
Notations.

Subsets of n  ,
Intervals of  [ ]a
Boxes of n [ ]a
Set of boxes of n n

Box hull of a set  

Union hull of two boxes [ ]⊔[ ] = [ ] ∪ [ ]x y x y
Composition of functions ○ =f f f2

Fig. 1. Contractor consistent with to the set .
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